1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
|
\name{lssvm-class}
\docType{class}
\alias{lssvm-class}
\alias{alpha,lssvm-method}
\alias{b,lssvm-method}
\alias{cross,lssvm-method}
\alias{error,lssvm-method}
\alias{kcall,lssvm-method}
\alias{kernelf,lssvm-method}
\alias{kpar,lssvm-method}
\alias{param,lssvm-method}
\alias{lev,lssvm-method}
\alias{type,lssvm-method}
\alias{alphaindex,lssvm-method}
\alias{xmatrix,lssvm-method}
\alias{ymatrix,lssvm-method}
\alias{scaling,lssvm-method}
\alias{nSV,lssvm-method}
\title{Class "lssvm"}
\description{The Gaussian Processes object }
\section{Objects from the Class}{
Objects can be created by calls of the form \code{new("lssvm", ...)}.
or by calling the \code{lssvm} function
}
\section{Slots}{
\describe{
\item{\code{kernelf}:}{Object of class \code{"kfunction"} contains
the kernel function used}
\item{\code{kpar}:}{Object of class \code{"list"} contains the
kernel parameter used }
\item{\code{param}:}{Object of class \code{"list"} contains the
regularization parameter used.}
\item{\code{kcall}:}{Object of class \code{"call"} contains the used
function call }
\item{\code{type}:}{Object of class \code{"character"} contains
type of problem }
\item{\code{coef}:}{Object of class \code{"ANY"} contains
the model parameter }
\item{\code{terms}:}{Object of class \code{"ANY"} contains the
terms representation of the symbolic model used (when using a formula)}
\item{\code{xmatrix}:}{Object of class \code{"matrix"} containing
the data matrix used }
\item{\code{ymatrix}:}{Object of class \code{"output"} containing the
response matrix}
\item{\code{fitted}:}{Object of class \code{"output"} containing the
fitted values }
\item{\code{b}:}{Object of class \code{"numeric"} containing the
offset }
\item{\code{lev}:}{Object of class \code{"vector"} containing the
levels of the response (in case of classification) }
\item{\code{scaling}:}{Object of class \code{"ANY"} containing the
scaling information performed on the data}
\item{\code{nclass}:}{Object of class \code{"numeric"} containing
the number of classes (in case of classification) }
\item{\code{alpha}:}{Object of class \code{"listI"} containing the
computes alpha values }
\item{\code{alphaindex}}{Object of class \code{"list"} containing
the indexes for the alphas in various classes (in multi-class problems).}
\item{\code{error}:}{Object of class \code{"numeric"} containing the
training error}
\item{\code{cross}:}{Object of class \code{"numeric"} containing the
cross validation error}
\item{\code{n.action}:}{Object of class \code{"ANY"} containing the
action performed in NA }
\item{\code{nSV}:}{Object of class \code{"numeric"} containing the
number of model parameters }
}
}
\section{Methods}{
\describe{
\item{alpha}{\code{signature(object = "lssvm")}: returns the alpha
vector}
\item{cross}{\code{signature(object = "lssvm")}: returns the cross
validation error }
\item{error}{\code{signature(object = "lssvm")}: returns the
training error }
\item{fitted}{\code{signature(object = "vm")}: returns the fitted values }
\item{kcall}{\code{signature(object = "lssvm")}: returns the call performed}
\item{kernelf}{\code{signature(object = "lssvm")}: returns the
kernel function used}
\item{kpar}{\code{signature(object = "lssvm")}: returns the kernel
parameter used}
\item{param}{\code{signature(object = "lssvm")}: returns the regularization
parameter used}
\item{lev}{\code{signature(object = "lssvm")}: returns the
response levels (in classification) }
\item{type}{\code{signature(object = "lssvm")}: returns the type
of problem}
\item{scaling}{\code{signature(object = "ksvm")}: returns the
scaling values }
\item{xmatrix}{\code{signature(object = "lssvm")}: returns the
data matrix used}
\item{ymatrix}{\code{signature(object = "lssvm")}: returns the
response matrix used}
}
}
\author{Alexandros Karatzoglou\cr \email{alexandros.karatzoglou@ci.tuwien.ac.at}}
\seealso{
\code{\link{lssvm}},
\code{\link{ksvm-class}}
}
\examples{
# train model
data(iris)
test <- lssvm(Species~.,data=iris,var=2)
test
alpha(test)
error(test)
lev(test)
}
\keyword{classes}
|