1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
\name{lssvm}
\docType{methods}
\alias{lssvm}
\alias{lssvm-methods}
\alias{lssvm,formula-method}
\alias{lssvm,vector-method}
\alias{lssvm,matrix-method}
\alias{lssvm,list-method}
\alias{lssvm,kernelMatrix-method}
\alias{show,lssvm-method}
\alias{coef,lssvm-method}
\alias{predict,lssvm-method}
\title{Least Squares Support Vector Machine}
\description{
The \code{lssvm} function is an
implementation of the Least Squares SVM. \code{lssvm} includes a
reduced version of Least Squares SVM using a decomposition of the
kernel matrix which is calculated by the \code{csi} function.
}
\usage{
\S4method{lssvm}{formula}(x, data=NULL, ..., subset, na.action = na.omit, scaled = TRUE)
\S4method{lssvm}{vector}(x, ...)
\S4method{lssvm}{matrix}(x, y, scaled = TRUE, kernel = "rbfdot", kpar = "automatic",
type = NULL, tau = 0.01, reduced = TRUE, tol = 0.0001,
rank = floor(dim(x)[1]/3), delta = 40, cross = 0, fit = TRUE,
..., subset, na.action = na.omit)
\S4method{lssvm}{kernelMatrix}(x, y, type = NULL, tau = 0.01,
tol = 0.0001, rank = floor(dim(x)[1]/3), delta = 40, cross = 0,
fit = TRUE, ...)
\S4method{lssvm}{list}(x, y, scaled = TRUE,
kernel = "stringdot", kpar = list(length=4, lambda = 0.5),
type = NULL, tau = 0.01, reduced = TRUE, tol = 0.0001,
rank = floor(dim(x)[1]/3), delta = 40, cross = 0, fit = TRUE,
..., subset)
}
\arguments{
\item{x}{a symbolic description of the model to be fit, a matrix or
vector containing the training data when a formula interface is not
used or a \code{kernelMatrix} or a list of character vectors.}
\item{data}{an optional data frame containing the variables in the model.
By default the variables are taken from the environment which
`lssvm' is called from.}
\item{y}{a response vector with one label for each row/component of \code{x}. Can be either
a factor (for classification tasks) or a numeric vector (for
classification or regression - currently nor supported -).}
\item{scaled}{A logical vector indicating the variables to be
scaled. If \code{scaled} is of length 1, the value is recycled as
many times as needed and all non-binary variables are scaled.
Per default, data are scaled internally to zero mean and unit
variance. The center and scale values are returned and used for later predictions.}
\item{type}{Type of problem. Either "classification" or "regression".
Depending on whether \code{y} is a factor or not, the default
setting for \code{type} is "classification" or "regression" respectively,
but can be overwritten by setting an explicit value. (regression is
currently not supported)\cr}
\item{kernel}{the kernel function used in training and predicting.
This parameter can be set to any function, of class kernel, which computes a dot product between two
vector arguments. kernlab provides the most popular kernel functions
which can be used by setting the kernel parameter to the following
strings:
\itemize{
\item \code{rbfdot} Radial Basis kernel "Gaussian"
\item \code{polydot} Polynomial kernel
\item \code{vanilladot} Linear kernel
\item \code{tanhdot} Hyperbolic tangent kernel
\item \code{laplacedot} Laplacian kernel
\item \code{besseldot} Bessel kernel
\item \code{anovadot} ANOVA RBF kernel
\item \code{splinedot} Spline kernel
\item \code{stringdot} String kernel
}
Setting the kernel parameter to "matrix" treats \code{x} as a kernel
matrix calling the \code{kernelMatrix} interface.\cr
The kernel parameter can also be set to a user defined function of
class kernel by passing the function name as an argument.
}
\item{kpar}{
the list of hyper-parameters (kernel parameters).
This is a list which contains the parameters to be used with the
kernel function. For valid parameters for existing kernels are :
\itemize{
\item \code{sigma} inverse kernel width for the Radial Basis
kernel function "rbfdot" and the Laplacian kernel "laplacedot".
\item \code{degree, scale, offset} for the Polynomial kernel "polydot"
\item \code{scale, offset} for the Hyperbolic tangent kernel
function "tanhdot"
\item \code{sigma, order, degree} for the Bessel kernel "besseldot".
\item \code{sigma, degree} for the ANOVA kernel "anovadot".
\item \code{length, lambda, normalized} for the "stringdot" kernel
where length is the length of the strings considered, lambda the
decay factor and normalized a logical parameter determining if the
kernel evaluations should be normalized.
}
Hyper-parameters for user defined kernels can be passed through the
kpar parameter as well.\cr
\code{kpar} can also be set to the string "automatic" which uses the heuristics in
\code{\link{sigest}} to calculate a good \code{sigma} value for the
Gaussian RBF or Laplace kernel, from the data. (default = "automatic").
}
\item{tau}{the regularization parameter (default 0.01) }
\item{reduced}{if set to \code{FALSE} the full linear problem of the
lssvm is solved, when \code{TRUE} a reduced method using \code{csi} is used.}
\item{rank}{the maximal rank of the decomposed kernel matrix, see
\code{csi}}
\item{delta}{number of columns of cholesky performed in advance, see
\code{csi} (default 40)}
\item{tol}{tolerance of termination criterion for the \code{csi}
function, lower tolerance leads to more precise approximation but
may increase the training time and the decomposed matrix size (default: 0.0001)}
\item{fit}{indicates whether the fitted values should be computed and
included in the model or not (default: 'TRUE')}
\item{cross}{if a integer value k>0 is specified, a k-fold cross
validation on the training data is performed to assess the
quality of the model: the Mean Squared Error for regression}
\item{subset}{An index vector specifying the cases to be used in the
training sample. (NOTE: If given, this argument must be
named.)}
\item{na.action}{A function to specify the action to be taken if \code{NA}s are
found. The default action is \code{na.omit}, which leads to rejection of cases
with missing values on any required variable. An alternative
is \code{na.fail}, which causes an error if \code{NA} cases
are found. (NOTE: If given, this argument must be named.)}
\item{\dots}{ additional parameters}
}
\details{Least Squares Support Vector Machines are reformulation to the
standard SVMs that lead to solving linear KKT systems.
The algorithm is based on the minimization of a classical penalized
least-squares cost function. The current implementation approximates
the kernel matrix by an incomplete Cholesky factorization obtained by
the \code{\link{csi}} function, thus the solution is an approximation
to the exact solution of the lssvm optimization problem. The quality
of the solution depends on the approximation and can be influenced by
the "rank" , "delta", and "tol" parameters.
}
\value{
An S4 object of class \code{"lssvm"} containing the fitted model,
Accessor functions can be used to access the slots of the object (see
examples) which include:
\item{alpha}{the parameters of the \code{"lssvm"}}
\item{coef}{the model coefficients (identical to alpha)}
\item{b}{the model offset.}
\item{xmatrix}{the training data used by the model}
}
\references{
J. A. K. Suykens and J. Vandewalle\cr
\emph{Least Squares Support Vector Machine Classifiers}\cr
Neural Processing Letters vol. 9, issue 3, June 1999\cr
}
\author{Alexandros Karatzoglou \cr \email{alexandros.karatzoglou@ci.tuwien.ac.at}}
\seealso{\code{\link{ksvm}}, \code{\link{gausspr}}, \code{\link{csi}} }
\examples{
## simple example
data(iris)
lir <- lssvm(Species~.,data=iris)
lir
lirr <- lssvm(Species~.,data= iris, reduced = FALSE)
lirr
## Using the kernelMatrix interface
iris <- unique(iris)
rbf <- rbfdot(0.5)
k <- kernelMatrix(rbf, as.matrix(iris[,-5]))
klir <- lssvm(k, iris[, 5])
klir
pre <- predict(klir, k)
}
\keyword{classif}
\keyword{nonlinear}
\keyword{methods}
|