1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
|
\name{predict.kqr}
\alias{predict.kqr}
\alias{predict,kqr-method}
\title{Predict method for kernel Quantile Regression object}
\description{Prediction of test data for kernel quantile regression}
\usage{
\S4method{predict}{kqr}(object, newdata)
}
\arguments{
\item{object}{an S4 object of class \code{kqr} created by the
\code{kqr} function}
\item{newdata}{a data frame, matrix, or kernelMatrix containing new data}
}
\value{The value of the quantile given by the computed \code{kqr}
model in a vector of length equal to the the rows of \code{newdata}.
}
\author{Alexandros Karatzoglou\cr
\email{alexandros.karatzoglou@ci.tuwien.ac.at}}
\keyword{methods}
\keyword{regression}
\examples{
# create data
x <- sort(runif(300))
y <- sin(pi*x) + rnorm(300,0,sd=exp(sin(2*pi*x)))
# first calculate the median
qrm <- kqr(x, y, tau = 0.5, C=0.15)
# predict and plot
plot(x, y)
ytest <- predict(qrm, x)
lines(x, ytest, col="blue")
# calculate 0.9 quantile
qrm <- kqr(x, y, tau = 0.9, kernel = "rbfdot",
kpar= list(sigma=10), C=0.15)
ytest <- predict(qrm, x)
lines(x, ytest, col="red")
}
|