File: rvm-class.Rd

package info (click to toggle)
r-cran-kernlab 0.9-33-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,216 kB
  • sloc: cpp: 6,011; ansic: 935; makefile: 2
file content (131 lines) | stat: -rw-r--r-- 4,610 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
\name{rvm-class}
\docType{class}
\alias{rvm-class}
\alias{RVindex}
\alias{mlike}
\alias{nvar}
\alias{RVindex,rvm-method}
\alias{alpha,rvm-method}
\alias{cross,rvm-method}
\alias{error,rvm-method}
\alias{kcall,rvm-method}
\alias{kernelf,rvm-method}
\alias{kpar,rvm-method}
\alias{lev,rvm-method}
\alias{mlike,rvm-method}
\alias{nvar,rvm-method}
\alias{type,rvm-method}
\alias{xmatrix,rvm-method}
\alias{ymatrix,rvm-method}

\title{Class "rvm"}
\description{Relevance Vector Machine Class}
\section{Objects from the Class}{
Objects can be created by calls of the form \code{new("rvm", ...)}.
or by calling the \code{rvm} function.
}
\section{Slots}{
  \describe{

    \item{\code{tol}:}{Object of class \code{"numeric"} contains
      tolerance of termination criteria used.}
    \item{\code{kernelf}:}{Object of class \code{"kfunction"} contains
      the kernel function used }
    \item{\code{kpar}:}{Object of class \code{"list"} contains the
      hyperparameter used}
    \item{\code{kcall}:}{Object of class \code{"call"} contains the
      function call}
    \item{\code{type}:}{Object of class \code{"character"} contains type
    of problem}
    \item{\code{terms}:}{Object of class \code{"ANY"}  containing the
      terms representation of the symbolic model used (when using a
      formula interface)}
    \item{\code{xmatrix}:}{Object of class \code{"matrix"} contains the data
      matrix used during computation}
    \item{\code{ymatrix}:}{Object of class \code{"output"} contains the
      response matrix}
    \item{\code{fitted}:}{Object of class \code{"output"} with the fitted
      values, (predict on training set).}
    \item{\code{lev}:}{Object of class \code{"vector"} contains the
      levels of the response (in classification)}
    \item{\code{nclass}:}{Object of class \code{"numeric"} contains the
      number of classes (in classification)}
    \item{\code{alpha}:}{Object of class \code{"listI"} containing the the
    resulting alpha vector}
     \item{\code{coef}:}{Object of class \code{"ANY"} containing the the
    resulting model parameters}
    \item{\code{nvar}:}{Object of class \code{"numeric"} containing the
      calculated variance (in case of regression)}
    \item{\code{mlike}:}{Object of class \code{"numeric"} containing the
    computed maximum likelihood}
    \item{\code{RVindex}:}{Object of class \code{"vector"} containing
      the indexes of the resulting relevance vectors }
    \item{\code{nRV}:}{Object of class \code{"numeric"} containing the
      number of relevance vectors}
    \item{\code{cross}:}{Object of class \code{"numeric"} containing the
      resulting cross validation error }
    \item{\code{error}:}{Object of class \code{"numeric"} containing the
    training error}
    \item{\code{n.action}:}{Object of class \code{"ANY"} containing the
      action performed on NA}

  }
}
\section{Methods}{
  \describe{
    \item{RVindex}{\code{signature(object = "rvm")}: returns the index
      of the relevance vectors }
    \item{alpha}{\code{signature(object = "rvm")}: returns the resulting
    alpha vector}
    \item{cross}{\code{signature(object = "rvm")}: returns the resulting
    cross validation error}
    \item{error}{\code{signature(object = "rvm")}: returns the training
      error  }
    \item{fitted}{\code{signature(object = "vm")}: returns the fitted values }
    \item{kcall}{\code{signature(object = "rvm")}: returns the function call }
    \item{kernelf}{\code{signature(object = "rvm")}: returns the used
      kernel function }
    \item{kpar}{\code{signature(object = "rvm")}: returns the parameters
    of the kernel function}
    \item{lev}{\code{signature(object = "rvm")}: returns the levels of
      the response (in classification)}
    \item{mlike}{\code{signature(object = "rvm")}: returns the estimated
      maximum likelihood}
    \item{nvar}{\code{signature(object = "rvm")}: returns the calculated
    variance (in regression)}
    \item{type}{\code{signature(object = "rvm")}: returns the type of problem}
    \item{xmatrix}{\code{signature(object = "rvm")}: returns the data
      matrix used during computation}
    \item{ymatrix}{\code{signature(object = "rvm")}: returns the used response }
  }
}

\author{Alexandros Karatzoglou\cr \email{alexandros.karatzoglou@ci.tuwien.ac.at}}


\seealso{
  \code{\link{rvm}}, 
   \code{\link{ksvm-class}}
}

\examples{

# create data
x <- seq(-20,20,0.1)
y <- sin(x)/x + rnorm(401,sd=0.05)

# train relevance vector machine
foo <- rvm(x, y)
foo

alpha(foo)
RVindex(foo)
fitted(foo)
kernelf(foo)
nvar(foo)

## show slots
slotNames(foo)

}
\keyword{classes}