File: rvm.Rd

package info (click to toggle)
r-cran-kernlab 0.9-33-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,216 kB
  • sloc: cpp: 6,011; ansic: 935; makefile: 2
file content (194 lines) | stat: -rw-r--r-- 7,085 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
\name{rvm}
\alias{rvm}
\alias{rvm-methods}
\alias{rvm,formula-method}
\alias{rvm,list-method}
\alias{rvm,vector-method}
\alias{rvm,kernelMatrix-method}
\alias{rvm,matrix-method}
\alias{show,rvm-method}
\alias{predict,rvm-method}
\alias{coef,rvm-method}
\title{Relevance Vector Machine}

\description{
  The Relevance Vector Machine is a Bayesian model for regression and
  classification of identical functional form to the support vector
  machine.
  The \code{rvm} function currently supports only regression.
}
\usage{
\S4method{rvm}{formula}(x, data=NULL, ..., subset, na.action = na.omit)

\S4method{rvm}{vector}(x, ...)

\S4method{rvm}{matrix}(x, y, type="regression",
    kernel="rbfdot", kpar="automatic",
    alpha= ncol(as.matrix(x)), var=0.1, var.fix=FALSE, iterations=100,
    verbosity = 0, tol = .Machine$double.eps, minmaxdiff = 1e-3,
    cross = 0, fit = TRUE, ... , subset, na.action = na.omit) 

\S4method{rvm}{list}(x, y, type = "regression",
    kernel = "stringdot", kpar = list(length = 4, lambda = 0.5),
    alpha = 5, var = 0.1, var.fix = FALSE, iterations = 100,
    verbosity = 0, tol = .Machine$double.eps, minmaxdiff = 1e-3,
    cross = 0, fit = TRUE, ..., subset, na.action = na.omit)
}



\arguments{

  \item{x}{a symbolic description of the model to be fit.
    When not using a formula x can be a matrix or vector containing the training
    data or a kernel matrix of class \code{kernelMatrix} of the training data
    or a list of character vectors (for use with the string
    kernel). Note, that the intercept is always excluded, whether
    given in the formula or not.}
  \item{data}{an optional data frame containing the variables in the model.
          By default the variables are taken from the environment which
          `rvm' is called from.}
	  
  \item{y}{a response vector with one label for each row/component of \code{x}. Can be either
    a factor (for classification tasks) or a numeric vector (for
    regression).}
  \item{type}{\code{rvm} can only be used for regression at the moment.}


  \item{kernel}{the kernel function used in training and predicting.
    This parameter can be set to any function, of class kernel, which computes a dot product between two
    vector arguments. kernlab provides the most popular kernel functions
    which can be used by setting the kernel parameter to the following
    strings:
    \itemize{
    \item \code{rbfdot} Radial Basis kernel "Gaussian"

      \item \code{polydot} Polynomial kernel

      \item \code{vanilladot} Linear kernel 

      \item \code{tanhdot} Hyperbolic tangent kernel 

      \item \code{laplacedot} Laplacian kernel 

      \item \code{besseldot} Bessel kernel 

      \item \code{anovadot} ANOVA RBF kernel 

      \item \code{splinedot} Spline kernel 

      \item \code{stringdot} String kernel 

    }
    The kernel parameter can also be set to a user defined function of
    class kernel by passing the function name as an argument.
  }
  \item{kpar}{the list of hyper-parameters (kernel parameters).
    This is a list which contains the parameters to be used with the
    kernel function. For valid parameters for existing kernels are :

    \itemize{
      \item \code{sigma} inverse kernel width for the Radial Basis
      kernel function "rbfdot" and the Laplacian kernel "laplacedot".

      \item \code{degree, scale, offset} for the Polynomial kernel "polydot"

      \item \code{scale, offset} for the Hyperbolic tangent kernel
      function "tanhdot"

      \item \code{sigma, order, degree} for the Bessel kernel "besseldot". 

      \item \code{sigma, degree} for the ANOVA kernel "anovadot".
      
      \item \code{length, lambda, normalized} for the "stringdot" kernel
      where length is the length of the strings considered, lambda the
      decay factor and normalized a logical parameter determining if the
      kernel evaluations should be normalized.
    }

    Hyper-parameters for user defined kernels can be passed through the
    kpar parameter as well. In the case of a Radial Basis kernel function (Gaussian)
     kpar can also be set to the string "automatic" which uses the heuristics in 
    \code{\link{sigest}} to calculate a good \code{sigma} value for the
    Gaussian RBF or Laplace kernel, from the data.
    (default = "automatic").}

  \item{alpha}{The initial alpha vector. Can be either a vector of
    length equal to the number of data points or a single number.}

  \item{var}{the initial noise variance}

  \item{var.fix}{Keep noise variance fix during iterations (default: FALSE)}

  \item{iterations}{Number of iterations allowed (default: 100)} 
  \item{tol}{tolerance of termination criterion}
  \item{minmaxdiff}{termination criteria. Stop when max difference is
    equal to this parameter (default:1e-3) }
  \item{verbosity}{print information on algorithm convergence (default
    = FALSE)}
  \item{fit}{indicates whether the fitted values should be computed and
          included in the model or not (default: TRUE)}
	\item{cross}{if a integer value k>0 is specified, a k-fold cross
          validation on the training data is performed to assess the
          quality of the model: the Mean Squared Error for regression}

	\item{subset}{An index vector specifying the cases to be used in the
          training sample.  (NOTE: If given, this argument must be
          named.)}
  \item{na.action}{A function to specify the action to be taken if \code{NA}s are
          found. The default action is \code{na.omit}, which leads to rejection of cases
          with missing values on any required variable. An alternative
	  is \code{na.fail}, which causes an error if \code{NA} cases
	  are found. (NOTE: If given, this argument must be named.)}
	

  \item{\dots}{ additional parameters}
}
\details{The Relevance Vector Machine typically leads to sparser models
  then the SVM. It also performs better in many cases (specially in
  regression). 
  }
\value{
  An S4 object of class "rvm" containing the fitted model.
  Accessor functions can be used to access the slots of the
  object which include :
  
  
  \item{alpha}{The resulting relevance vectors}
  \item{alphaindex}{ The index of the resulting relevance vectors in the data
    matrix}
  \item{nRV}{Number of relevance vectors}
  \item{RVindex}{The indexes of the relevance vectors}
  \item{error}{Training error (if \code{fit = TRUE})}
  
  ...
}
\references{
      Tipping, M. E.\cr
      \emph{Sparse Bayesian learning and the relevance vector machine}\cr
      Journal of Machine Learning Research  1, 211-244\cr
      \url{https://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf}
    }
\author{ Alexandros Karatzoglou \cr
\email{alexandros.karatzoglou@ci.tuwien.ac.at}}

\seealso{ \code{\link{ksvm}}}
\examples{
# create data
x <- seq(-20,20,0.1)
y <- sin(x)/x + rnorm(401,sd=0.05)

# train relevance vector machine
foo <- rvm(x, y)
foo
# print relevance vectors
alpha(foo)
RVindex(foo)

# predict and plot
ytest <- predict(foo, x)
plot(x, y, type ="l")
lines(x, ytest, col="red")
}
\keyword{regression}
\keyword{nonlinear}