1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
\name{specc}
\alias{specc}
\alias{specc,matrix-method}
\alias{specc,formula-method}
\alias{specc,list-method}
\alias{specc,kernelMatrix-method}
\alias{show,specc-method}
\title{Spectral Clustering}
\description{
A spectral clustering algorithm. Clustering is performed by
embedding the data into the subspace of the eigenvectors
of an affinity matrix.
}
\usage{
\S4method{specc}{formula}(x, data = NULL, na.action = na.omit, ...)
\S4method{specc}{matrix}(x, centers,
kernel = "rbfdot", kpar = "automatic",
nystrom.red = FALSE, nystrom.sample = dim(x)[1]/6,
iterations = 200, mod.sample = 0.75, na.action = na.omit, ...)
\S4method{specc}{kernelMatrix}(x, centers, nystrom.red = FALSE, iterations = 200, ...)
\S4method{specc}{list}(x, centers,
kernel = "stringdot", kpar = list(length=4, lambda=0.5),
nystrom.red = FALSE, nystrom.sample = length(x)/6,
iterations = 200, mod.sample = 0.75, na.action = na.omit, ...)
}
\arguments{
\item{x}{the matrix of data to be clustered, or a symbolic
description of the model to be fit, or a kernel Matrix of class
\code{kernelMatrix}, or a list of character vectors.}
\item{data}{an optional data frame containing the variables in the model.
By default the variables are taken from the environment which
`specc' is called from.}
\item{centers}{Either the number of clusters or a set of initial cluster
centers. If the first, a random set of rows in the eigenvectors
matrix are chosen as the initial centers.}
\item{kernel}{the kernel function used in computing the affinity matrix.
This parameter can be set to any function, of class kernel, which computes a dot product between two
vector arguments. kernlab provides the most popular kernel functions
which can be used by setting the kernel parameter to the following
strings:
\itemize{
\item \code{rbfdot} Radial Basis kernel function "Gaussian"
\item \code{polydot} Polynomial kernel function
\item \code{vanilladot} Linear kernel function
\item \code{tanhdot} Hyperbolic tangent kernel function
\item \code{laplacedot} Laplacian kernel function
\item \code{besseldot} Bessel kernel function
\item \code{anovadot} ANOVA RBF kernel function
\item \code{splinedot} Spline kernel
\item \code{stringdot} String kernel
}
The kernel parameter can also be set to a user defined function of
class kernel by passing the function name as an argument.
}
\item{kpar}{a character string or the list of hyper-parameters (kernel parameters).
The default character string \code{"automatic"} uses a heuristic to determine a
suitable value for the width parameter of the RBF kernel.
The second option \code{"local"} (local scaling) uses a more advanced heuristic
and sets a width parameter for every point in the data set. This is
particularly useful when the data incorporates multiple scales.
A list can also be used containing the parameters to be used with the
kernel function. Valid parameters for existing kernels are :
\itemize{
\item \code{sigma} inverse kernel width for the Radial Basis
kernel function "rbfdot" and the Laplacian kernel "laplacedot".
\item \code{degree, scale, offset} for the Polynomial kernel "polydot"
\item \code{scale, offset} for the Hyperbolic tangent kernel
function "tanhdot"
\item \code{sigma, order, degree} for the Bessel kernel "besseldot".
\item \code{sigma, degree} for the ANOVA kernel "anovadot".
\item \code{length, lambda, normalized} for the "stringdot" kernel
where length is the length of the strings considered, lambda the
decay factor and normalized a logical parameter determining if the
kernel evaluations should be normalized.
}
Hyper-parameters for user defined kernels can be passed through the
kpar parameter as well.}
\item{nystrom.red}{use nystrom method to calculate eigenvectors. When
\code{TRUE} a sample of the dataset is used to calculate the
eigenvalues, thus only a \eqn{n x m} matrix where \eqn{n} the sample size
is stored in memory (default: \code{FALSE}}
\item{nystrom.sample}{number of data points to use for estimating the
eigenvalues when using the nystrom method. (default : dim(x)[1]/6)}
\item{mod.sample}{proportion of data to use when estimating sigma (default: 0.75)}
\item{iterations}{the maximum number of iterations allowed. }
\item{na.action}{the action to perform on NA}
\item{\dots}{additional parameters}
}
\details{
Spectral clustering works by embedding the data points of the
partitioning problem into the
subspace of the \eqn{k} largest eigenvectors of a normalized affinity/kernel matrix.
Using a simple clustering method like \code{kmeans} on the embedded points usually
leads to good performance. It can be shown that spectral clustering methods boil down to
graph partitioning.\cr
The data can be passed to the \code{specc} function in a \code{matrix} or a
\code{data.frame}, in addition \code{specc} also supports input in the form of a
kernel matrix of class \code{kernelMatrix} or as a list of character
vectors where a string kernel has to be used.}
\value{
An S4 object of class \code{specc} which extends the class \code{vector}
containing integers indicating the cluster to which
each point is allocated. The following slots contain useful information
\item{centers}{A matrix of cluster centers.}
\item{size}{The number of point in each cluster}
\item{withinss}{The within-cluster sum of squares for each cluster}
\item{kernelf}{The kernel function used}
}
\references{
Andrew Y. Ng, Michael I. Jordan, Yair Weiss\cr
\emph{On Spectral Clustering: Analysis and an Algorithm}\cr
Neural Information Processing Symposium 2001\cr
\url{https://papers.neurips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm.pdf}
}
\author{Alexandros Karatzoglou \cr \email{alexandros.karatzoglou@ci.tuwien.ac.at}
}
\seealso{\code{\link{kkmeans}}, \code{\link{kpca}}, \code{\link{kcca}} }
\examples{
## Cluster the spirals data set.
data(spirals)
sc <- specc(spirals, centers=2)
sc
centers(sc)
size(sc)
withinss(sc)
plot(spirals, col=sc)
}
\keyword{cluster}
|