1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
|
Steelnormal <- function(mu,sig0,sig,tau,Wvec,ni,
alternative=c("greater","less","two-sided"),continuity.corr=TRUE){
# this function computes the normal approximation of the p-value for the Steel test,
# based on the sizes ni = c(n1,...,nk) of the k treatment samples
# based on the vector of Mann-Whitney statistics comparing the treatment sample values (Y)
# against the common control sample values (X), Wvec consists of k such comparison statistics
# counting X_i < Y_j and 0.5 of X_i = Y_j.
# mu , sig0, sig, and, tau are parameters required for the power evaluation.
alternative <- match.arg(alternative)
if(continuity.corr==TRUE){
cont.corr <- .5
}else{
cont.corr <- 0
}
k <- length(ni)
if(alternative=="greater"){
Sx <- max((Wvec-mu)/tau)
i0 <- min((1:k)[Sx == (Wvec-mu)/tau])
S <- (Wvec[i0]-cont.corr-mu[i0])/tau[i0]
funz <- function(z,k,sig0,sig,tau,S,ni){
fac <- 1
for(i in 1:k){
fac <- fac * pnorm((S*tau[i]-ni[i]*sig0*z)/sig[i])
}
dnorm(z)*fac
}
pval <- 1-integrate(funz,-Inf,Inf,k,sig0,sig,tau,S,ni)$value
}
if(alternative=="less"){
Sx <- min((Wvec-mu)/tau)
i0 <- min((1:k)[Sx == (Wvec-mu)/tau])
S <- (Wvec[i0]+cont.corr-mu[i0])/tau[i0]
funz <- function(z,k,sig0,sig,tau,S,ni){
fac <- 1
for(i in 1:k){
fac <- fac * (1-pnorm((S*tau[i]-ni[i]*sig0*z)/sig[i]))
}
dnorm(z)*fac
}
pval <- 1-integrate(funz,-Inf,Inf,k,sig0,sig,tau,S,ni)$value
}
if(alternative=="two-sided"){
Sx <- max(abs(Wvec-mu)/tau)
i0 <- min((1:k)[Sx == abs(Wvec-mu)/tau])
S <- (abs(Wvec[i0]-mu[i0])-cont.corr)/tau[i0]
funz <- function(z,k,sig0,sig,tau,S,ni){
fac <- 1
for(i in 1:k){
fac <- fac * (pnorm((S*tau[i]-ni[i]*sig0*z)/sig[i])-
pnorm((-S*tau[i]-ni[i]*sig0*z)/sig[i]))
}
dnorm(z)*fac
}
pval <- 1-integrate(funz,-Inf,Inf,k,sig0,sig,tau,S,ni)$value
}
pval
}
# end of Steelnormal
|