1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
ad.pval<-
function (tx,m,version=1)
{
# This function "adk.pval" evaluates the p-value of the observed value
# tx of the T_m statistic in "K-Sample Anderson-Darling Tests" by F.W. Scholz
# and M.A. Stephens (1987), Journal of the American Statistical Association,
# Vol 82, No. 399, pp 918-924. Thus this p-value is P(T_m >= tx).
#
# Input: tx = observed value of T_m, tx > 0.
# m = the index of T_m, m >= 1.
# version = 1 (default) uses the first version of the AD statistic,
# otherwise the second version is used.
#
# Output: a list with components
# p0 = p-value of tx, i.e., p0 = P(T_m >= tx)
# extrap = a logical indicator
# extrap = TRUE means that linear extrapolation took place
# extrap = FALSE means that quadratic interpolation was used.
#
# Computational Details:
#
# This function uses the upper T_m quantiles as obtained via simulation of
# the Anderson-Darling test statistics (Nsim = 2*10^6) with sample sizes n=500
# for each sample, and after standardization, in order to emulate the Table 1
# values given in the above reference. However, here we estimate p-quantiles
# for p = .00001,.00005,.0001,.0005,.001,.005,.01,.025,.05,.075,
# .1,.2,.3,.4,.5,.6,.7,.8,.9,.925,.95,.975,.99,.9925,.995,.9975,.999,
# .99925,.9995,.99975,.9999,.999925,.99995,.999975,.99999
# First the appropriate p-quantiles are determined from those simulated
# for ms = 1,2,3,4,6,8,10, Inf, interpolating to the given value of m
# by fitting a smoothing spline in 1/sqrt(ms) to the simulated quantiles.
# Visual inspection of plots of fitted splines versus 1/sqrt(ms) shows
# good agreement for the used smoothing parameter spar = .4.
#
# Next a smoothing spline is used to fit the log((1-p)/p) to
# these interpolated quantiles and the value fitted to tx is
# obtained (extrapolating linearly) beyond p = .00001 and .99999.
#
# The p-values from Table 1 were reproduced mainly with relative error
# bounded by 1%, in 6 cases with respective relative errors of 1.25%, 1.2%,
# 1.3%, 1.5%, 2.7% and 2.8% as can be seen from the relative error table below.
# The columns correspond to Table 1 p-values of .25, .10, .05, .025, .01 and
# the rows correspond to m = 1, 2 3, 4, 6, 8, 10, Inf.
#
# [,1] [,2] [,3] [,4] [,5]
# [1,] -0.0012 0.0011 0.0038 0.0123 0.0277
# [2,] -0.0105 -0.0109 -0.0022 0.0129 0.0271
# [3,] -0.0077 -0.0052 0.0042 0.0106 0.0152
# [4,] -0.0050 -0.0031 0.0035 0.0067 0.0057
# [5,] -0.0041 -0.0033 0.0055 0.0014 -0.0050
# [6,] -0.0048 -0.0026 0.0002 -0.0021 -0.0082
# [7,] -0.0070 -0.0042 -0.0023 -0.0036 -0.0119
# [8,] 0.0010 0.0005 0.0013 0.0017 0.0023
#
#
#
#
# Fritz Scholz, March 2012
#=========================================================================================
if(version==1){
table1.adk <- structure(c(1, 2, 3, 4, 6, 8, 10, Inf, -1.1954, -1.5806, -1.8172,
-2.0032, -2.2526, -2.4204, -2.5283, -4.2649, -1.1786, -1.5394,
-1.7728, -1.9426, -2.1685, -2.3288, -2.4374, -3.8906, -1.166,
-1.5193, -1.7462, -1.9067, -2.126, -2.2818, -2.3926, -3.719,
-1.1407, -1.4659, -1.671, -1.8105, -2.0048, -2.1356, -2.2348,
-3.2905, -1.1253, -1.4371, -1.6314, -1.7619, -1.9396, -2.0637,
-2.1521, -3.0902, -1.0777, -1.3503, -1.5102, -1.6177, -1.761,
-1.8537, -1.9178, -2.5758, -1.0489, -1.2984, -1.4415, -1.5355,
-1.6625, -1.738, -1.7936, -2.3263, -0.9978, -1.2098, -1.3251,
-1.4007, -1.4977, -1.5555, -1.5941, -1.96, -0.9417, -1.1187,
-1.209, -1.2671, -1.3382, -1.379, -1.405, -1.6449, -0.8981, -1.0491,
-1.1235, -1.1692, -1.2249, -1.2552, -1.2755, -1.4395, -0.8598,
-0.9904, -1.0513, -1.0879, -1.1317, -1.155, -1.1694, -1.2816,
-0.7258, -0.7938, -0.8188, -0.8312, -0.8435, -0.8471, -0.8496,
-0.8416, -0.5966, -0.617, -0.6177, -0.6139, -0.6073, -0.5987,
-0.5941, -0.5244, -0.4572, -0.4383, -0.419, -0.4033, -0.3834,
-0.3676, -0.3587, -0.2533, -0.2966, -0.2428, -0.2078, -0.1844,
-0.1548, -0.1346, -0.1224, 0, -0.1009, -0.0169, 0.0304, 0.0596,
0.0933, 0.1156, 0.1294, 0.2533, 0.1571, 0.2635, 0.3169, 0.348,
0.3823, 0.4038, 0.4166, 0.5244, 0.5357, 0.6496, 0.6992, 0.7246,
0.7528, 0.7683, 0.7771, 0.8416, 1.2255, 1.2989, 1.3202, 1.3254,
1.3305, 1.3286, 1.3257, 1.2816, 1.5262, 1.5677, 1.5709, 1.5663,
1.5561, 1.5449, 1.5356, 1.4395, 1.9633, 1.943, 1.919, 1.8975,
1.8641, 1.8389, 1.8212, 1.6449, 2.7314, 2.5899, 2.5, 2.4451,
2.3664, 2.3155, 2.2823, 1.96, 3.7825, 3.4425, 3.2582, 3.1423,
3.0036, 2.9101, 2.8579, 2.3263, 4.1241, 3.716, 3.4984, 3.3651,
3.2003, 3.0928, 3.0311, 2.4324, 4.6044, 4.0847, 3.8348, 3.6714,
3.4721, 3.3453, 3.2777, 2.5758, 5.409, 4.7223, 4.4022, 4.1791,
3.9357, 3.7809, 3.6963, 2.807, 6.4954, 5.5823, 5.1456, 4.8657,
4.5506, 4.3275, 4.2228, 3.0902, 6.8279, 5.8282, 5.3658, 5.0749,
4.7318, 4.4923, 4.3642, 3.1747, 7.2755, 6.197, 5.6715, 5.3642,
4.9991, 4.7135, 4.5945, 3.2905, 8.1885, 6.8537, 6.2077, 5.8499,
5.4246, 5.1137, 4.9555, 3.4808, 9.3061, 7.6592, 6.85, 6.4806,
5.9919, 5.6122, 5.5136, 3.719, 9.6132, 7.9234, 7.1025, 6.6731,
6.1549, 5.8217, 5.7345, 3.7911, 10.0989, 8.2395, 7.4326, 6.9567,
6.3908, 6.011, 5.9566, 3.8906, 10.8825, 8.8994, 7.8934, 7.4501,
6.9009, 6.4538, 6.2705, 4.0556, 11.8537, 9.5482, 8.5568, 8.0283,
7.4418, 6.9524, 6.6195, 4.2649), .Dim = c(8L, 36L), .Dimnames = list(
NULL, NULL))}else{
table1.adk <- structure(c(1, 2, 3, 4, 6, 8, 10, Inf, -1.1976, -1.5824, -1.8195,
-2.005, -2.2546, -2.422, -2.5292, -4.2649, -1.1806, -1.5416,
-1.7747, -1.9434, -2.1687, -2.3301, -2.438, -3.8906, -1.1681,
-1.5212, -1.7479, -1.9078, -2.1268, -2.2827, -2.3937, -3.719,
-1.1427, -1.4677, -1.6724, -1.8115, -2.0059, -2.1363, -2.2359,
-3.2905, -1.1272, -1.4387, -1.6325, -1.7629, -1.9405, -2.0649,
-2.1527, -3.0902, -1.0794, -1.3518, -1.5112, -1.6187, -1.7617,
-1.8545, -1.9182, -2.5758, -1.0504, -1.2997, -1.4425, -1.5362,
-1.6632, -1.7387, -1.7943, -2.3263, -0.999, -1.2109, -1.3259,
-1.4014, -1.4981, -1.5561, -1.5945, -1.96, -0.9428, -1.1196,
-1.2098, -1.2677, -1.3386, -1.3795, -1.4054, -1.6449, -0.8991,
-1.05, -1.1241, -1.1697, -1.2253, -1.2557, -1.2758, -1.4395,
-0.8607, -0.9911, -1.0518, -1.0883, -1.1321, -1.1555, -1.1698,
-1.2816, -0.7264, -0.7944, -0.8192, -0.8315, -0.8437, -0.8473,
-0.8498, -0.8416, -0.597, -0.6173, -0.6179, -0.6141, -0.6074,
-0.5989, -0.5942, -0.5244, -0.4574, -0.4385, -0.4191, -0.4034,
-0.3835, -0.3677, -0.3588, -0.2533, -0.2966, -0.2427, -0.2078,
-0.1844, -0.1548, -0.1347, -0.1224, 0, -0.1007, -0.0168, 0.0305,
0.0596, 0.0934, 0.1157, 0.1295, 0.2533, 0.1573, 0.2638, 0.3171,
0.3482, 0.3825, 0.404, 0.4168, 0.5244, 0.5363, 0.6501, 0.6996,
0.7249, 0.753, 0.7685, 0.7773, 0.8416, 1.2263, 1.2997, 1.3209,
1.3258, 1.3309, 1.329, 1.326, 1.2816, 1.5274, 1.5686, 1.5716,
1.5667, 1.5565, 1.5453, 1.536, 1.4395, 1.9644, 1.944, 1.92, 1.8983,
1.8647, 1.8396, 1.8216, 1.6449, 2.7334, 2.5915, 2.5013, 2.4457,
2.3671, 2.3162, 2.2827, 1.96, 3.7851, 3.4443, 3.2595, 3.1436,
3.0046, 2.9111, 2.8585, 2.3263, 4.1255, 3.7175, 3.4997, 3.3661,
3.2011, 3.0939, 3.0318, 2.4324, 4.6067, 4.0869, 3.8363, 3.6724,
3.4729, 3.3463, 3.278, 2.5758, 5.4121, 4.7248, 4.4032, 4.1812,
3.9369, 3.7819, 3.6977, 2.807, 6.5, 5.5856, 5.1469, 4.8683, 4.552,
4.3284, 4.2229, 3.0902, 6.8324, 5.8302, 5.3678, 5.0769, 4.7332,
4.4933, 4.3654, 3.1747, 7.278, 6.1999, 5.674, 5.3661, 5.0001,
4.7147, 4.5956, 3.2905, 8.1926, 6.8586, 6.2082, 5.8524, 5.4265,
5.115, 4.9571, 3.4808, 9.3096, 7.6673, 6.8522, 6.4825, 5.9934,
5.6135, 5.5147, 3.719, 9.6207, 7.929, 7.1051, 6.6763, 6.1548,
5.8229, 5.7358, 3.7911, 10.1076, 8.2437, 7.4349, 6.9593, 6.3923,
6.0136, 5.9573, 3.8906, 10.8874, 8.9034, 7.8991, 7.4543, 6.9017,
6.4568, 6.2723, 4.0556, 11.8602, 9.5499, 8.5596, 8.0315, 7.4425,
6.9537, 6.6213, 4.2649), .Dim = c(8L, 36L), .Dimnames = list(
NULL, NULL))
}
extrap <- FALSE
mt <- table1.adk[, 1]
sqm1 <- 1/sqrt(mt)
sqm2 <- sqm1^2
tm <- NULL
p <- 1 - c(.00001,.00005,.0001,.0005,.001,.005,.01,.025,.05,.075,
.1,.2,.3,.4,.5,.6,.7,.8,.9,.925,.95,.975,.99,.9925,.995,.9975,.999,
.99925,.9995,.99975,.9999,.999925,.99995,.999975,.99999)
np <- length(p)
lp <- log(p/(1 - p))
sqm0 <- 1/sqrt(m)
for (i in 1:np) {
out <- smooth.spline(sqm1,table1.adk[,i+1],spar=.4)
y <- predict(out,sqm0)$y
tm <- c(tm, y)
}
out <- smooth.spline(tm,lp,spar=.25)
lp0 <- predict(out,tx)$y
p0 <- exp(lp0)/(1 + exp(lp0))
names(p0) <- NULL
p0
}
|