File: contingency2xt.R

package info (click to toggle)
r-cran-ksamples 1.2-10-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 456 kB
  • sloc: ansic: 1,321; makefile: 2
file content (167 lines) | stat: -rw-r--r-- 6,030 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Project:  2 * t Contingency Table
# adapted from Angie Zhu's getTable2xtNull.R
# Filename: Contingency2xt.R
# Last modified: 03.23.2012

# This function computes or simulates the null distribution of
# the Kruskal-Wallis statistics in a 2 x t contingency table.  

# Treatment |   1   2   ...    t  | Total
# ---------------------------------------
# Response  |                     |
#    a      | A_1  A_2   ...  A_t | m
#    b      | B_1  B_2   ...  B_t | n
# ---------------------------------------
# Total     | d_1  d_2   ...  d_t | N

# Arguments:  
#		Avec: integer vector of length tnum, containing the 
#                "a" reponses
#		Bvec: integer vector of length tnum, containing the 
#                "b" reponses
#		method: "asymptotic", "simulated", "exact", 
#                  indicating the method of p-value calculation,
#		dist: FALSE (default) means that the exact or
#                estimated null distribution is not requested, 
#                otherwise it is. 
#          tab0: TRUE (default), when method = "simulated",
#			 the null distribution is given in tabular form,
#                when tab0 = FALSE and method = "simulated", the
#                null distribution is given as a single vector 
#                of all simulated values. 
#		Nsim: number of simulations to run, default 10^6
#
#
# Output: a list of class "kSamples" with components
#        test.name  = "2 x t Contingency Table"
#                t  =  number of columns in the table
#          KW.cont  = 2 (or 3 vector) containing the observed KW
#                     value, its asymptotic (and the simulated 
#                     or exact) P-value
#          null.dist  = a 2 x M matrix giving the M unique 
#                       ordered KW values of the null 
#                       distribution in the first column, and 
#                       the corresponding probabilities 
#                       (simulated or exact) in the second 
#                       column. When method = "simulated" and 
# 			        tab0 = FALSE null.dist consists of a
#                       single vector of all simulated values.
#			When dist = NULL or method = "asymptotic", only 
#                           NULL is returned.
#        method = the method used
#        Nsim = number of simulations employed


contingency2xt <- function(Avec, Bvec, method=c("asymptotic","simulated","exact"), 
           		dist = FALSE, tab0 = TRUE, Nsim=1e6) {
    	method <- match.arg(method)
	m <- sum(Avec)
	n <- sum(Bvec)
    	tnum <- length(Avec)
	N <- m + n
	dvec <- Avec + Bvec
	KW.obs <- (N * (N - 1) / (m * n)) * (sum(Avec^2 / dvec) - 
                  	m^2/N )
	pValue.asy <- 1 - pchisq(KW.obs,tnum-1)
	if(dist == TRUE) Nsim <- min(Nsim,1e8) 
	# limits the size of null.dist
	# whether method = "exact" or = "simulated"
	if(method == "asymptotic"){
		KW.cont <- c(KW.obs,pValue.asy)
		null.dist <- NULL
	}else{
		ncomb <- choose(m + tnum - 1, tnum - 1)
		if (ncomb <= Nsim && method == "exact") { 
			if(dist){ 
					ans <- numeric(2+2*ncomb)
				}else{
					ans <- numeric(2)
			}
			out <- .C("contingency2xtExact0",
					Avec = as.integer(Avec), Bvec = as.integer(Bvec),
					tnum = as.integer(tnum), 
					ncomb = as.integer(ncomb),
					getDist = as.integer(dist),
                                	ans = as.double(ans), PACKAGE = "kSamples")
				KW.obs <- out$ans[1]
				KW.obs <- (N * (N - 1) / (m * n)) * (KW.obs - 
                                 	m^2 / N) 
				KW.obs <- round(KW.obs, 6)
       				pValue <- out$ans[2]		
				if(dist){	
					out <- out$ans[-(1:2)]
					out <- matrix(out, nrow=ncomb, ncol=2, byrow=FALSE)
					out <- out[out[, 2] > 0, ]
					prob <- out[ , 2]
					KW <- (N * (N - 1) / (m * n)) * (
                                    		out[ , 1] - m^2 / N) 
					KW <- round(KW, 6)
					KW.u <- sort(unique(KW))
					k.u <- length(KW.u)
					prob.u <- sapply(1:k.u, function(j) {
		 					sum( prob[KW == KW.u[j]] ) })
					null.dist <- cbind(KW.u,prob.u)
                    			dimnames(null.dist) <- list(NULL,c("KW","prob"))
				}else{
					null.dist <- NULL
				}
				KW.cont <- c(KW.obs,pValue.asy,pValue)
		}else{
			method <- "simulated"
		}
		if( method == "simulated" ){
			if( Nsim < 100) Nsim <- 100
			if(dist){ 
					ans <- numeric(2+Nsim)
				}else{
					ans <- numeric(2)
			}
			out <- .C("contingency2xtSim0",
					Avec = as.integer(Avec), Bvec = as.integer(Bvec),
					tnum = as.integer(tnum), 
					Nsim = as.integer(Nsim),
					getDist = as.integer(dist),
                                	ans = as.double(ans))	
			KW.obs <- out$ans[1]
			KW.obs <- (N * (N - 1) / (m * n)) * (KW.obs - m^2 / N) 
			KW.obs <- round(KW.obs, 6)
      			pValue <- out$ans[2]		
			if(dist){
				KW <- (N * (N - 1) / (m * n)) * 
                           		(round(out$ans[3:(Nsim+2)],6) - m^2 / N)
				if(tab0==TRUE){
					tab <- table(KW)/Nsim
					null.dist <-
                                   cbind(as.numeric(names(tab)),
                                            as.vector(tab))
                    		dimnames(null.dist) <- 
                             list(NULL,c("KW","prob"))}else{
					null.dist <- KW
				}
			}else{
				null.dist <- NULL
			}
			KW.cont <- c(KW.obs,pValue.asy,pValue)
		}
	}
    if(method=="asymptotic"){
		names(KW.cont) <- c("observed KW",
                               "  asympt. P-value")
    }
    if(method=="exact"){
		names(KW.cont) <- c("observed KW",
                           "  asympt. P-value","exact P-Value")
    }
    if(method=="simulated"){
		names(KW.cont) <- c("observed KW",
                           "  asympt. P-value","sim. P-Value")
    }
    object <- list(test.name =paste("2 x t Contingency Table"),
                     t = tnum, KW.cont = KW.cont, 
                     null.dist = null.dist, 
				method = method, Nsim = Nsim)
    class(object) <- "kSamples"
    object
}