1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
##' Percentage tables for Likert Scale variables
##'
##' Creates a table with columns for allowed values and rows for
##' variables.
##' @param data A data frame. Function will try to include all
##' variables in data, unless vlist is provided.
##' @param vlist A vector of column names in data that should be
##' displayed
##' @param columnlabels Column labels, optional to beautify variable
##' names. If not supplied, column names will be used as column
##' labels. Provide either 1) A named vector that replaces one or
##' more columns, \code{c(oldname1 = "newlabel1", oldname2 =
##' "newlabel2")} where oldnames are in colnames(data), or 2) a
##' vector of same length as vlist (or data if vlist is not
##' supplied) that will replace them one for one.
##' @param valuelabels A vector of values to beautify existing
##' levels. If not supplied, factor levels will be used as row
##' labels
##' @param rows Should output be transposed. This may help if there
##' are many variables that need to fit on the page. Percentages
##' will appear on the rows, rather than columns.
##' @param digits Number of decimals to display in percentages
##' @param ... Arguments to pass to R's table function. We suggest
##' \code{useNA = "always"} to add missing value information and
##' \code{exclude = original.value.label} to exclude values
##' observed. Currently, \code{useNA = "ifany"} does not work as
##' expected, the number of missings will be displayed, even if
##' there are none.
##' @return A list, including a frequency table (called "freqTab"),
##' column counts ("counts"), column sums ("sums"), and
##' column percents ("pcts").
##' @author Paul Johnson <pauljohn@@ku.edu>
##' @importFrom xtable xtable print.xtable
##' @export
##' @examples
##' vvector <- c("Strongly Disagree", "Disagree", "Neutral",
##' "Agree", "Strongly Agree")
##' set.seed(2342234)
##' N <- 28
##' scales <-
##' data.frame(Vegas = factor(sample(1:5, N, replace = TRUE),
##' levels = 1:5, labels = vvector),
##' NewYork = factor(sample(1:5, N, replace = TRUE),
##' levels = 1:5, labels = vvector),
##' Paris = factor(sample(1:5, N, replace = TRUE),
##' levels = 1:5, labels = vvector),
##' Berlin = factor(sample(1:5, N, replace = TRUE),
##' levels = 1:5, labels = vvector))
##'
##' likert(scales)
##'
##' likert(scales, exclude = "Disagree")
##'
##' likert(scales, exclude = "Strongly Disagree", useNA = "ifany")
##'
##' (mySummary1 <- likert(data = scales, vlist = c("Vegas", "NewYork", "Paris")))
##' mySummary1[["pcts"]]
##'
##' (mySummary2 <- likert(scales, vlist = c("Vegas", "NewYork", "Paris"),
##' valuelabels = c("SD", "D", "N", "A", "SA")))
##' (mySummary3 <- likert(scales, vlist = c("Vegas", "NewYork", "Paris"),
##' valuelabels = c("Strongly Disagree" = "Strong Disagreement")))
##'
##' (mySummary5 <- likert(scales, vlist = c("Vegas", "NewYork", "Paris"),
##' valuelabels = c("SD", "D", "N", "A", "SA"),
##' columnlabels = c("Vegas" = "Sin City"), rows = TRUE))
##'
##' ## Example of how one might write this in a file.
##' ## print(xtable::xtable(mySummary1[[1]], digits = 1),
##' ## type = "html", file = "varCount-1.html")
##'
likert <- function(data, vlist, columnlabels, valuelabels,
rows = FALSE, digits = 2, ...){
## xxx <- lapply(data[ , vlist], table)
## t(sapply(data[, vlist], table))
## TODO: Insert check that variables have same levels
if (!missing(vlist) && !is.null(vlist)){
data <- data[ , vlist, drop = FALSE]
} else {
vlist <- colnames(data)
}
## If variable is not factor, coerce as factor
if(any(!sapply(data, is.factor))){
for (i in colnames(data)){
data[ , i] <- as.factor(data[ , i])
}
}
dots <- list(...)
## add error checking
## All columns must have same factor levels, else stop
factorlevels <- unique(lapply(data, levels))
if(length(factorlevels) > 1) {
warning("All columns do not have same factor levels, will append")
factorlevels <- unique(unlist(factorlevels))
} else {
factorlevels <- unlist(factorlevels)
}
if (length(dots$exclude) > 0) {
factorlevels <- factorlevels[-match(dots$exclude, factorlevels)]
}
if(!missing(valuelabels) && !is.null(valuelabels)){
if(length(valuelabels) < length(factorlevels)){
if(is.null(names(valuelabels))){
MESSG <- "valuelabels is incomplete or unnamed"
stop(MESSG)
} else {
## valuelabels is named, so replace
factorlevels <- modifyVector(factorlevels, valuelabels)
}
} else if (length(valuelabels) == length(factorlevels)){
if (is.null(names(valuelabels))) factorlevels <- valuelabels
else factorlevels <- valuelabels[factorlevels]
} else if (length(valuelabels) > length(factorlevels)){
stop("valuelabels vector too long")
}
for (i in seq_along(data)) levels(data[ , i]) <- factorlevels
}
if(!missing(columnlabels) && !is.null(columnlabels)){
if(length(columnlabels) < length(vlist)){
if(is.null(names(columnlabels))){
stop("columnlabels is incomplete or unnamed")
} else {
columnlabels <- modifyVector(vlist, columnlabels)
}
} else if (length(columnlabels) == length(vlist)){
if (is.null(names(columnlabels))) names(columnlabels) <- vlist
} else if (length(columnlabels) > length(vlist)){
stop("columnlabels vector too long")
}
} else {
columnlabels <- colnames(data)
}
## User wants missings:
if ("exclude" %in% names(dots) && is.null(dots$exclude) || (length(dots$useNA) > 0 && dots$useNA != "no")){
data[is.na(data)] <- "NA"
factorlevels <- c(factorlevels, "NA")
}
varCount <- matrix(0, nrow = length(factorlevels), ncol = NCOL(data),
dimnames = list(factorlevels, colnames(data)))
for (i in colnames(data)){
xxx <- table(data[ , i], ...)
varCount[rownames(xxx), i ] <- xxx
}
colnames(varCount) = columnlabels
varSums <- colSums(varCount)
varColPct <- 100.0 * sweep(varCount, 2, varSums, "/")
varColPct.char <- formatC(varColPct, digits = digits, format = "f")
freqTab <- matrix(NA, nrow = NROW(varColPct.char), ncol = NCOL(varColPct.char))
dimnames(freqTab) <- list(rownames(varColPct.char), colnames(varColPct.char))
for(i in 1:NROW(varColPct.char)) {
freqTab[i, ] <- paste0(varColPct.char[i, ], "% (", varCount[i, ], ")")
}
## freqTab <- rbind( rep(paste0("Pct (Count)")), freqTab)
## colnames(freqTab) <- colnames(varColPct.char)
freqTab <- rbind(freqTab, varSums)
rownames(freqTab)[NROW(freqTab)] <- "Total"
if (!rows) {
res <- list(table = freqTab, count = varCount, sums = varSums, pcts = varColPct)
} else {
res <- list(table = t(freqTab), counts = t(varCount), sums = varSums, pcts = t(varColPct))
}
class(res) <- c("likert", class(res))
res
}
##' print method for likert tables
##'
##' Nothing fancy here. \code{cat} is called on first item in list
##' @param x likert object, 1st item will be printed
##' @param ... Arguments passed to print method
##' @return Nothing
##' @method print likert
##' @export
##' @author Paul Johnson <pauljohn@@ku.edu>
print.likert <- function(x, ...){
print(x[[1]], ...)
}
|