1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/variableKey.R
\name{keyTemplate}
\alias{keyTemplate}
\title{Create variable key template (in memory or in a file)}
\usage{
keyTemplate(
dframe,
long = FALSE,
sort = FALSE,
file = NULL,
max.levels = 15,
missings = NULL,
missSymbol = ".",
safeNumericToInteger = TRUE,
trimws = "both",
varlab = FALSE
)
}
\arguments{
\item{dframe}{A data frame}
\item{long}{Default FALSE.}
\item{sort}{Default FALSE. Should the rows representing the
variables be sorted alphabetically? Otherwise, they appear in
the order in which they were included in the original dataset.}
\item{file}{DEFAULT NULL, meaning no file is produced. Choose a
file name ending in either "csv" (for comma separated
variables), "xlsx" (compatible with Microsoft Excel), or "rds"
(R serialization data). The file name will be used to select
among the 3 storage formats. XLSX output requires the openxlsx
package.}
\item{max.levels}{How high is the limit on the number of values
for discrete (integer, character, and Date) variables?
Default = 15. If observed number exceeds max.levels, we
conclude the author should not assign new values in the key
and only the missing value will be included in the key as a
"placeholder". This does not affect variables declared as
factor or ordered variables, for which all levels are included
in all cases.}
\item{missings}{Values in exising data which should be treated as
missing in the new key. Character string in format acceptable
to the \code{assignMissing} function. Can be a string with
several missing indicators"1;2;3;(8,10);[22,24];> 99;< 2".}
\item{missSymbol}{Default ".". A character string used to
represent missing values in the key that is created. Relevant
(mostly) for the key's \code{value_new} column. Default is the
period, ".". Because R's symbol \code{NA} can be mistaken for
the character string \code{"NA"}, we use a different
(hopefully unmistakable) symbol in the key.}
\item{safeNumericToInteger}{Default TRUE: Should we treat values
which appear to be integers as integers? If a column is
numeric, it might be safe to treat it as an integer. In many
csv data sets, the values coded c(1, 2, 3) are really
integers, not floats c(1.0, 2.0, 3.0). See \code{safeInteger}.}
\item{trimws}{Default is "both", user can change to "left", "right", or
set as NULL to avoid any trimming.}
\item{varlab}{A key can have a companion data structure for
variable labels. Default is FALSE, but the value may also be
TRUE or a named vector of variable labels, such as
\code{c("x1" = "happiness", "x2" = "wealth")}. The labels
become an attribute of the key object. See Details for
information on storage of varlabs in saved key files.}
}
\value{
A key in the form of a data frame. May also be saved on
disk if the file argument is supplied. The key may have an
attribute "varlab", variable labels.
}
\description{
A variable key is a human readable document that describes the
variables in a data set. A key can be revised and re-imported by R
to recode data. This might also be referred to as a
"programmable codebook." This function inspects a data frame,
takes notice of its variable names, their classes, and legal
values, and then it creates a table summarizing that
information. The aim is to create a document that principal
investigators and research assistants can use to keep a project
well organized. Please see the vignette in this package.
}
\details{
The variable key can be created in two formats, wide and long.
The original style of the variable key, wide, has one row per
variable. It has a style for compact notation about current values
and required recodes. That is more compact, probably easier for
experts to read, but perhaps more difficult to edit. The long
style variable key has one row per value per variable. Thus, in a
larger project, the long key can have many rows. However, in a
larger project, the long style key is easier to edit with a spread
sheet program.
After a key is created, it should be re-imported into R with the
\code{kutils::keyImport} function. Then the key structure can
guide the importation and recoding of the data set.
Concerning the varlab attribute. Run \code{attr(key, "varlab"} to
review existing labels, if any.
Storing the variable labels in files requires some care because
the \code{rds}, \code{xlsx}, and \code{csv} formats have different
capabilities. The \code{rds} storage format saves all attributes without
difficulty. In contrast, because \code{csv} and \code{xlsx} do not save
attributes, the varlabs are stored as separate character
matrices. For \code{xlsx} files, the varlab object is saved as a second
sheet in \code{xlsx} file, while in \code{csv} a second file suffixed
"-varlab.csv" is created.
}
\examples{
set.seed(234234)
N <- 200
mydf <- data.frame(x5 = rnorm(N),
x4 = rpois(N, lambda = 3),
x3 = ordered(sample(c("lo", "med", "hi"),
size = N, replace=TRUE),
levels = c("med", "lo", "hi")),
x2 = letters[sample(c(1:4,6), N, replace = TRUE)],
x1 = factor(sample(c("cindy", "bobby", "marcia",
"greg", "peter"), N,
replace = TRUE)),
x7 = ordered(letters[sample(c(1:4,6), N, replace = TRUE)]),
x6 = sample(c(1:5), N, replace = TRUE),
stringsAsFactors = FALSE)
mydf$x4[sample(1:N, 10)] <- 999
mydf$x5[sample(1:N, 10)] <- -999
## Note: If we change this example data, we need to save a copy in
## "../inst/extdata" for packacing
dn <- tempdir()
write.csv(mydf, file = file.path(dn, "mydf.csv"), row.names = FALSE)
mydf.templ <- keyTemplate(mydf, file = file.path(dn, "mydf.templ.csv"),
varlab = TRUE)
mydf.templ_long <- keyTemplate(mydf, long = TRUE,
file = file.path(dn, "mydf.templlong.csv"),
varlab = TRUE)
mydf.templx <- keyTemplate(mydf, file = file.path(dn, "mydf.templ.xlsx"),
varlab = TRUE)
mydf.templ_longx <- keyTemplate(mydf, long = TRUE,
file = file.path(dn, "mydf.templ_long.xlsx"),
varlab = TRUE)
## Check the varlab attribute
attr(mydf.templ, "varlab")
mydf.tmpl2 <- keyTemplate(mydf,
varlab = c(x5 = "height", x4 = "age",
x3 = "intelligence", x1 = "Name"))
## Check the varlab attribute
attr(mydf.tmpl2, "varlab")
## Try with the national longitudinal study data
data(natlongsurv)
natlong.templ <- keyTemplate(natlongsurv,
file = file.path(dn, "natlongsurv.templ.csv"),
max.levels = 15, varlab = TRUE, sort = TRUE)
natlong.templlong <- keyTemplate(natlongsurv, long = TRUE,
file = file.path(dn, "natlongsurv.templ_long.csv"), sort = TRUE)
if(interactive()) View(natlong.templlong)
natlong.templlong2 <- keyTemplate(natlongsurv, long = TRUE,
missings = "<0", max.levels = 50, sort = TRUE,
varlab = TRUE)
if(interactive()) View(natlong.templlong2)
natlong.templwide2 <- keyTemplate(natlongsurv, long = FALSE,
missings = "<0", max.levels = 50, sort = TRUE)
if(interactive()) View(natlong.templwide2)
all.equal(wide2long(natlong.templwide2), natlong.templlong2)
head(keyTemplate(natlongsurv, file = file.path(dn, "natlongsurv.templ.xlsx"),
max.levels = 15, varlab = TRUE, sort = TRUE), 10)
head(keyTemplate(natlongsurv, file = file.path(dn, "natlongsurv.templ.xlsx"),
long = TRUE, max.levels = 15, varlab = TRUE, sort = TRUE), 10)
list.files(dn)
}
\author{
Paul Johnson <pauljohn@ku.edu>
}
|