File: estimate.default.Rd

package info (click to toggle)
r-cran-lava 1.7.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 2,636 kB
  • sloc: sh: 13; makefile: 2
file content (231 lines) | stat: -rw-r--r-- 6,014 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/estimate.default.R
\name{estimate.default}
\alias{estimate.default}
\alias{estimate}
\alias{estimate.estimate}
\alias{merge.estimate}
\title{Estimation of functional of parameters}
\usage{
\method{estimate}{default}(
  x = NULL,
  f = NULL,
  ...,
  data,
  id,
  iddata,
  stack = TRUE,
  average = FALSE,
  subset,
  score.deriv,
  level = 0.95,
  IC = robust,
  type = c("robust", "df", "mbn"),
  keep,
  use,
  regex = FALSE,
  contrast,
  null,
  vcov,
  coef,
  robust = TRUE,
  df = NULL,
  print = NULL,
  labels,
  label.width,
  only.coef = FALSE,
  back.transform = NULL,
  folds = 0,
  cluster,
  R = 0,
  null.sim
)
}
\arguments{
\item{x}{model object (\code{glm}, \code{lvmfit}, ...)}

\item{f}{transformation of model parameters and (optionally) data, or contrast matrix (or vector)}

\item{...}{additional arguments to lower level functions}

\item{data}{\code{data.frame}}

\item{id}{(optional) id-variable corresponding to ic decomposition of model parameters.}

\item{iddata}{(optional) id-variable for 'data'}

\item{stack}{if TRUE (default)  the i.i.d. decomposition is automatically stacked according to 'id'}

\item{average}{if TRUE averages are calculated}

\item{subset}{(optional) subset of data.frame on which to condition (logical expression or variable name)}

\item{score.deriv}{(optional) derivative of mean score function}

\item{level}{level of confidence limits}

\item{IC}{if TRUE (default) the influence function decompositions are also returned (extract with \code{IC} method)}

\item{type}{type of small-sample correction}

\item{keep}{(optional) index of parameters to keep from final result}

\item{use}{(optional) index of parameters to use in calculations}

\item{regex}{If TRUE use regular expression (perl compatible) for keep,use arguments}

\item{contrast}{(optional) Contrast matrix for final Wald test}

\item{null}{(optional) null hypothesis to test}

\item{vcov}{(optional) covariance matrix of parameter estimates (e.g. Wald-test)}

\item{coef}{(optional) parameter coefficient}

\item{robust}{if TRUE robust standard errors are calculated. If
FALSE p-values for linear models are calculated from t-distribution}

\item{df}{degrees of freedom (default obtained from 'df.residual')}

\item{print}{(optional) print function}

\item{labels}{(optional) names of coefficients}

\item{label.width}{(optional) max width of labels}

\item{only.coef}{if TRUE only the coefficient matrix is return}

\item{back.transform}{(optional) transform of parameters and confidence intervals}

\item{folds}{(optional) aggregate influence functions (divide and conquer)}

\item{cluster}{(obsolete) alias for 'id'.}

\item{R}{Number of simulations (simulated p-values)}

\item{null.sim}{Mean under the null for simulations}
}
\description{
Estimation of functional of parameters.
Wald tests, robust standard errors, cluster robust standard errors,
LRT (when \code{f} is not a function)...
}
\details{
influence function decomposition
\deqn{\sqrt{n}(\widehat{\theta}-\theta) = \sum_{i=1}^n\epsilon_i + o_p(1)}
can be extracted with the \code{IC} method.
}
\examples{

## Simulation from logistic regression model
m <- lvm(y~x+z);
distribution(m,y~x) <- binomial.lvm("logit")
d <- sim(m,1000)
g <- glm(y~z+x,data=d,family=binomial())
g0 <- glm(y~1,data=d,family=binomial())

## LRT
estimate(g,g0)

## Plain estimates (robust standard errors)
estimate(g)

## Testing contrasts
estimate(g,null=0)
estimate(g,rbind(c(1,1,0),c(1,0,2)))
estimate(g,rbind(c(1,1,0),c(1,0,2)),null=c(1,2))
estimate(g,2:3) ## same as cbind(0,1,-1)
estimate(g,as.list(2:3)) ## same as rbind(c(0,1,0),c(0,0,1))
## Alternative syntax
estimate(g,"z","z"-"x",2*"z"-3*"x")
estimate(g,z,z-x,2*z-3*x)
estimate(g,"?")  ## Wildcards
estimate(g,"*Int*","z")
estimate(g,"1","2"-"3",null=c(0,1))
estimate(g,2,3)

## Usual (non-robust) confidence intervals
estimate(g,robust=FALSE)

## Transformations
estimate(g,function(p) p[1]+p[2])

## Multiple parameters
e <- estimate(g,function(p) c(p[1]+p[2],p[1]*p[2]))
e
vcov(e)

## Label new parameters
estimate(g,function(p) list("a1"=p[1]+p[2],"b1"=p[1]*p[2]))
##'
## Multiple group
m <- lvm(y~x)
m <- baptize(m)
d2 <- d1 <- sim(m,50,seed=1)
e <- estimate(list(m,m),list(d1,d2))
estimate(e) ## Wrong
ee <- estimate(e, id=rep(seq(nrow(d1)), 2)) ## Clustered
ee
estimate(lm(y~x,d1))

## Marginalize
f <- function(p,data)
  list(p0=lava:::expit(p["(Intercept)"] + p["z"]*data[,"z"]),
       p1=lava:::expit(p["(Intercept)"] + p["x"] + p["z"]*data[,"z"]))
e <- estimate(g, f, average=TRUE)
e
estimate(e,diff)
estimate(e,cbind(1,1))

## Clusters and subset (conditional marginal effects)
d$id <- rep(seq(nrow(d)/4),each=4)
estimate(g,function(p,data)
         list(p0=lava:::expit(p[1] + p["z"]*data[,"z"])),
         subset=d$z>0, id=d$id, average=TRUE)

## More examples with clusters:
m <- lvm(c(y1,y2,y3)~u+x)
d <- sim(m,10)
l1 <- glm(y1~x,data=d)
l2 <- glm(y2~x,data=d)
l3 <- glm(y3~x,data=d)

## Some random id-numbers
id1 <- c(1,1,4,1,3,1,2,3,4,5)
id2 <- c(1,2,3,4,5,6,7,8,1,1)
id3 <- seq(10)

## Un-stacked and stacked i.i.d. decomposition
IC(estimate(l1,id=id1,stack=FALSE))
IC(estimate(l1,id=id1))

## Combined i.i.d. decomposition
e1 <- estimate(l1,id=id1)
e2 <- estimate(l2,id=id2)
e3 <- estimate(l3,id=id3)
(a2 <- merge(e1,e2,e3))

## If all models were estimated on the same data we could use the
## syntax:
## Reduce(merge,estimate(list(l1,l2,l3)))

## Same:
IC(a1 <- merge(l1,l2,l3,id=list(id1,id2,id3)))

IC(merge(l1,l2,l3,id=TRUE)) # one-to-one (same clusters)
IC(merge(l1,l2,l3,id=FALSE)) # independence


## Monte Carlo approach, simple trend test example

m <- categorical(lvm(),~x,K=5)
regression(m,additive=TRUE) <- y~x
d <- simulate(m,100,seed=1,'y~x'=0.1)
l <- lm(y~-1+factor(x),data=d)

f <- function(x) coef(lm(x~seq_along(x)))[2]
null <- rep(mean(coef(l)),length(coef(l))) ## just need to make sure we simulate under H0: slope=0
estimate(l,f,R=1e2,null.sim=null)

estimate(l,f)
}