File: predict.lvm.Rd

package info (click to toggle)
r-cran-lava 1.7.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 2,636 kB
  • sloc: sh: 13; makefile: 2
file content (61 lines) | stat: -rw-r--r-- 1,437 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/predict.R
\name{predict.lvm}
\alias{predict.lvm}
\alias{predict.lvmfit}
\title{Prediction in structural equation models}
\usage{
\method{predict}{lvm}(
  object,
  x = NULL,
  y = NULL,
  residual = FALSE,
  p,
  data,
  path = FALSE,
  quick = is.null(x) & !(residual | path),
  ...
)
}
\arguments{
\item{object}{Model object}

\item{x}{optional list of (endogenous) variables to condition on}

\item{y}{optional subset of variables to predict}

\item{residual}{If true the residuals are predicted}

\item{p}{Parameter vector}

\item{data}{Data to use in prediction}

\item{path}{Path prediction}

\item{quick}{If TRUE the conditional mean and variance given covariates are returned (and all other calculations skipped)}

\item{\dots}{Additional arguments to lower level function}
}
\description{
Prediction in structural equation models
}
\examples{
m <- lvm(list(c(y1,y2,y3)~u,u~x)); latent(m) <- ~u
d <- sim(m,100)
e <- estimate(m,d)

## Conditional mean (and variance as attribute) given covariates
r <- predict(e)
## Best linear unbiased predictor (BLUP)
r <- predict(e,vars(e))
##  Conditional mean of y3 giving covariates and y1,y2
r <- predict(e,y3~y1+y2)
##  Conditional mean  gives covariates and y1
r <- predict(e,~y1)
##  Predicted residuals (conditional on all observed variables)
r <- predict(e,vars(e),residual=TRUE)

}
\seealso{
predictlvm
}