1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
##' Generic method for calculating bootstrap statistics
##'
##' @title Generic bootstrap method
##' @param x Model object
##' @param \dots Additional arguments
##' @seealso \code{bootstrap.lvm} \code{bootstrap.lvmfit}
##' @author Klaus K. Holst
##' @export
bootstrap <- function(x,...) UseMethod("bootstrap")
##' Calculate bootstrap estimates of a lvm object
##'
##' Draws non-parametric bootstrap samples
##'
##' @param x \code{lvm}-object.
##' @param R Number of bootstrap samples
##' @param data The data to resample from
##' @param fun Optional function of the (bootstrapped) model-fit defining the
##' statistic of interest
##' @param control Options to the optimization routine
##' @param p Parameter vector of the null model for the parametric bootstrap
##' @param parametric If TRUE a parametric bootstrap is calculated. If FALSE a
##' non-parametric (row-sampling) bootstrap is computed.
##' @param bollenstine Bollen-Stine transformation (non-parametric bootstrap) for bootstrap hypothesis testing.
##' @param constraints Logical indicating whether non-linear parameter
##' constraints should be included in the bootstrap procedure
##' @param sd Logical indicating whether standard error estimates should be
##' included in the bootstrap procedure
##' @param mc.cores Optional number of cores for parallel computing. If omitted future.apply will be used (see future::plan)
##' @param future.args arguments to future.apply::future_lapply
##' @param estimator String definining estimator, e.g. 'gaussian' (see
##' \code{estimator})
##' @param weights Optional weights matrix used by \code{estimator}
##' @param \dots Additional arguments, e.g. choice of estimator.
##' @aliases bootstrap.lvmfit
##' @usage
##'
##' \method{bootstrap}{lvm}(x,R=100,data,fun=NULL,control=list(),
##' p, parametric=FALSE, bollenstine=FALSE,
##' constraints=TRUE,sd=FALSE, mc.cores,
##' future.args=list(future.seed=TRUE),
##' ...)
##'
##' \method{bootstrap}{lvmfit}(x,R=100,data=model.frame(x),
##' control=list(start=coef(x)),
##' p=coef(x), parametric=FALSE, bollenstine=FALSE,
##' estimator=x$estimator,weights=Weights(x),...)
##'
##' @return A \code{bootstrap.lvm} object.
##' @author Klaus K. Holst
##' @seealso \code{\link{confint.lvmfit}}
##' @keywords models regression
##' @examples
##' m <- lvm(y~x)
##' d <- sim(m,100)
##' e <- estimate(lvm(y~x), data=d)
##' \donttest{ ## Reduce Ex.Timings
##' B <- bootstrap(e,R=50,mc.cores=1)
##' B
##' }
##' @export
bootstrap.lvm <- function(x, R = 100, data, fun = NULL, control = list(),
p, parametric = FALSE, bollenstine = FALSE,
constraints = TRUE, sd = FALSE, mc.cores,
future.args=list(future.seed=TRUE),
...) {
coefs <- sds <- c()
on.exit(list(coef = coefs[-1, ], sd = sds[-1, ], coef0 = coefs[1, ], sd0 = sds[1, ], model = x))
pb <- progressr::progressor(steps = R)
pmis <- missing(p)
bootfun <- function(i) {
if (i == 0) {
d0 <- data
} else {
if (!parametric | pmis) {
d0 <- data[sample(seq_len(nrow(data)), replace = TRUE), ]
} else {
d0 <- sim(x, p = p, n = nrow(data))
}
}
suppressWarnings(e0 <- estimate(x, data = d0, control = control, messages = 0, index = FALSE, ...))
pb()
if (!is.null(fun)) {
coefs <- fun(e0)
newsd <- NULL
} else {
coefs <- coef(e0)
newsd <- c()
if (sd) {
newsd <- e0$coef[, 2]
}
if (constraints & length(constrain(x)) > 0) {
cc <- constraints(e0, ...)
coefs <- c(coefs, cc[, 1])
names(coefs)[seq(length(coefs) - length(cc[, 1]) + 1, length(coefs))] <- rownames(cc)
if (sd) {
newsd <- c(newsd, cc[, 2])
}
}
}
return(list(coefs = coefs, sds = newsd))
}
if (bollenstine) {
e0 <- estimate(x, data = data, control = control, messages = 0, index = FALSE, ...)
mm <- modelVar(e0)
mu <- mm$xi
Y <- t(t(data[, manifest(e0)]) - as.vector(mu))
Sigma <- mm$C
S <- (ncol(Y) - 1) / ncol(Y) * var(Y)
sSigma <- with(eigen(Sigma), vectors %*% diag(sqrt(values), ncol = ncol(vectors)) %*% t(vectors))
isS <- with(eigen(S), vectors %*% diag(1 / sqrt(values), ncol = ncol(vectors)) %*% t(vectors))
data <- as.matrix(Y) %*% (isS %*% sSigma)
colnames(data) <- manifest(e0)
}
i <- 0
if (!missing(mc.cores)) {
res <- parallel::mclapply(0:R, bootfun, mc.cores=mc.cores)
} else {
res <- do.call(future_lapply, c(list(0:R, bootfun), future.args))
}
coefs <- matrix(unlist(lapply(res, function(x) x$coefs)), nrow = R + 1, byrow = TRUE)
nn <- names(res[[1]]$coefs)
if (!is.null(nn)) colnames(coefs) <- nn
sds <- NULL
if (sd) {
sds <- matrix(unlist(lapply(res, function(x) x$sds)), nrow = R + 1, byrow = TRUE)
}
if (!is.null(fun)) {
rownames(coefs) <- c()
res <- list(coef = coefs[-1, , drop = FALSE], coef0 = coefs[1, ], model = x)
} else {
colnames(coefs) <- names(res[[1]]$coefs)
rownames(coefs) <- c()
if (sd) colnames(sds) <- colnames(coefs)
res <- list(coef = coefs[-1, , drop = FALSE], sd = sds[-1, , drop = FALSE], coef0 = coefs[1, ], sd0 = sds[1, ], model = x, bollenstine = bollenstine)
}
class(res) <- "bootstrap.lvm"
return(res)
}
##' @export
bootstrap.lvmfit <- function(x, R = 100, data = model.frame(x),
control = list(start = coef(x)),
p = coef(x), parametric = FALSE, bollenstine = FALSE,
estimator = x$estimator, weights = Weights(x), ...) {
bootstrap.lvm(Model(x), R = R, data = data, control = control, estimator = estimator, weights = weights, parametric = parametric, bollenstine = bollenstine, p = p, ...)
}
##' @export
"print.bootstrap.lvm" <- function(x, idx, level = 0.95, ...) {
cat("Non-parametric bootstrap statistics (R=", nrow(x$coef), "):\n\n", sep = "")
uplow <- (c(0, 1) + c(1, -1) * (1 - level) / 2)
nn <- paste(uplow * 100, "%")
c1 <- t(apply(x$coef, 2, function(x) c(mean(x), sd(x), quantile(x, uplow))))
c1 <- cbind(x$coef0, c1[, 1] - x$coef0, c1[, -1, drop = FALSE])
colnames(c1) <- c("Estimate", "Bias", "Std.Err", nn)
if (missing(idx)) {
print(format(c1, ...), quote = FALSE)
} else {
print(format(c1[idx, , drop = FALSE], ...), quote = FALSE)
}
if (length(x$sd) > 0) {
c2 <- t(apply(x$sd, 2, function(x) c(mean(x), sd(x), quantile(x, c(0.025, 0.975)))))
c2 <- cbind(c2[, 1], c2[, 1] - x$sd0, c2[, -1])
colnames(c2) <- c("Estimate", "Bias", "Std.Err", "2.5%", "97.5%")
cat("\nStandard errors:\n")
if (missing(idx)) {
print(format(c2, ...), quote = FALSE)
} else {
print(format(c2[idx, , drop = FALSE], ...), quote = FALSE)
}
}
cat("\n")
invisible(x)
}
|