File: constrain.R

package info (click to toggle)
r-cran-lava 1.8.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,816 kB
  • sloc: sh: 13; makefile: 2
file content (435 lines) | stat: -rw-r--r-- 15,537 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
##' Define range constraints of parameters
##'
##' @aliases Range.lvm
##' @title Define range constraints of parameters
##' @param a Lower bound
##' @param b Upper bound
##' @return function
##' @author Klaus K. Holst
##' @export
Range.lvm <- function(a=0,b=1) {
    if (b==Inf) {
        f <- function(x) {
            res <- a+exp(x)
            attributes(res)$grad <- exp
            res
        }
        return(f)
    }
    if (a==-Inf) {
        f <- function(x) {
            res <- -exp(x)+b
            attributes(res)$grad <- function(x) -exp(x)
            res
        }
        return(f)
    }
    f <- function(x) {
        res <- (a+b*exp(x))/(1+exp(x))
        attributes(res)$grad <- function(x) exp(x)*(b-a-a*b*exp(x))/(1+exp(x))^2
        res
    }
    return(f)
}

##' Add non-linear constraints to latent variable model
##'
##' Add non-linear constraints to latent variable model
##'
##' Add non-linear parameter constraints as well as non-linear associations
##' between covariates and latent or observed variables in the model (non-linear
##' regression).
##'
##' As an example we will specify the follow multiple regression model:
##'
##' \deqn{E(Y|X_1,X_2) = \alpha + \beta_1 X_1 + \beta_2 X_2} \deqn{V(Y|X_1,X_2)
##' = v}
##'
##' which is defined (with the appropiate parameter labels) as
##'
##' \code{m <- lvm(y ~ f(x,beta1) + f(x,beta2))}
##'
##' \code{intercept(m) <- y ~ f(alpha)}
##'
##' \code{covariance(m) <- y ~ f(v)}
##'
##' The somewhat strained parameter constraint \deqn{ v =
##' \frac{(beta1-beta2)^2}{alpha}}
##'
##' can then specified as
##'
##' \code{constrain(m,v ~ beta1 + beta2 + alpha) <- function(x)
##' (x[1]-x[2])^2/x[3] }
##'
##' A subset of the arguments \code{args} can be covariates in the model,
##' allowing the specification of non-linear regression models.  As an example
##' the non-linear regression model \deqn{ E(Y\mid X) = \nu + \Phi(\alpha +
##' \beta X)} where \eqn{\Phi} denotes the standard normal cumulative
##' distribution function, can be defined as
##'
##' \code{m <- lvm(y ~ f(x,0)) # No linear effect of x}
##'
##' Next we add three new parameters using the \code{parameter} assigment
##' function:
##'
##' \code{parameter(m) <- ~nu+alpha+beta}
##'
##' The intercept of \eqn{Y} is defined as \code{mu}
##'
##' \code{intercept(m) <- y ~ f(mu)}
##'
##' And finally the newly added intercept parameter \code{mu} is defined as the
##' appropiate non-linear function of \eqn{\alpha}, \eqn{\nu} and \eqn{\beta}:
##'
##' \code{constrain(m, mu ~ x + alpha + nu) <- function(x)
##' pnorm(x[1]*x[2])+x[3]}
##'
##' The \code{constraints} function can be used to show the estimated non-linear
##' parameter constraints of an estimated model object (\code{lvmfit} or
##' \code{multigroupfit}). Calling \code{constrain} with no additional arguments
##' beyound \code{x} will return a list of the functions and parameter names
##' defining the non-linear restrictions.
##'
##' The gradient function can optionally be added as an attribute \code{grad} to
##' the return value of the function defined by \code{value}. In this case the
##' analytical derivatives will be calculated via the chain rule when evaluating
##' the corresponding score function of the log-likelihood. If the gradient
##' attribute is omitted the chain rule will be applied on a numeric
##' approximation of the gradient.
##' @aliases constrain constrain<- constrain.default constrain<-.multigroup
##' constrain<-.default constraints parameter<-
##' @return A \code{lvm} object.
##' @author Klaus K. Holst
##' @seealso \code{\link{regression}}, \code{\link{intercept}},
##' \code{\link{covariance}}
##' @keywords models regression
##' @examples
##' ##############################
##' ### Non-linear parameter constraints 1
##' ##############################
##' m <- lvm(y ~ f(x1,gamma)+f(x2,beta))
##' covariance(m) <- y ~ f(v)
##' d <- sim(m,100)
##' m1 <- m; constrain(m1,beta ~ v) <- function(x) x^2
##' ## Define slope of x2 to be the square of the residual variance of y
##' ## Estimate both restricted and unrestricted model
##' e <- estimate(m,d,control=list(method="NR"))
##' e1 <- estimate(m1,d)
##' p1 <- coef(e1)
##' p1 <- c(p1[1:2],p1[3]^2,p1[3])
##' ## Likelihood of unrestricted model evaluated in MLE of restricted model
##' logLik(e,p1)
##' ## Likelihood of restricted model (MLE)
##' logLik(e1)
##'
##' ##############################
##' ### Non-linear regression
##' ##############################
##'
##' ## Simulate data
##' m <- lvm(c(y1,y2)~f(x,0)+f(eta,1))
##' latent(m) <- ~eta
##' covariance(m,~y1+y2) <- "v"
##' intercept(m,~y1+y2) <- "mu"
##' covariance(m,~eta) <- "zeta"
##' intercept(m,~eta) <- 0
##' set.seed(1)
##' d <- sim(m,100,p=c(v=0.01,zeta=0.01))[,manifest(m)]
##' d <- transform(d,
##'                y1=y1+2*pnorm(2*x),
##'                y2=y2+2*pnorm(2*x))
##'
##' ## Specify model and estimate parameters
##' constrain(m, mu ~ x + alpha + nu + gamma) <- function(x) x[4]*pnorm(x[3]+x[1]*x[2])
##' \donttest{ ## Reduce Ex.Timings
##' e <- estimate(m,d,control=list(trace=1,constrain=TRUE))
##' constraints(e,data=d)
##' ## Plot model-fit
##' plot(y1~x,d,pch=16); points(y2~x,d,pch=16,col="gray")
##' x0 <- seq(-4,4,length.out=100)
##' lines(x0,coef(e)["nu"] + coef(e)["gamma"]*pnorm(coef(e)["alpha"]*x0))
##' }
##'
##' ##############################
##' ### Multigroup model
##' ##############################
##' ### Define two models
##' m1 <- lvm(y ~ f(x,beta)+f(z,beta2))
##' m2 <- lvm(y ~ f(x,psi) + z)
##' ### And simulate data from them
##' d1 <- sim(m1,500)
##' d2 <- sim(m2,500)
##' ### Add 'non'-linear parameter constraint
##' constrain(m2,psi ~ beta2) <- function(x) x
##' ## Add parameter beta2 to model 2, now beta2 exists in both models
##' parameter(m2) <- ~ beta2
##' ee <- estimate(list(m1,m2),list(d1,d2),control=list(method="NR"))
##' summary(ee)
##'
##' m3 <- lvm(y ~ f(x,beta)+f(z,beta2))
##' m4 <- lvm(y ~ f(x,beta2) + z)
##' e2 <- estimate(list(m3,m4),list(d1,d2),control=list(method="NR"))
##' e2
##' @export
##' @usage
##'
##' \method{constrain}{default}(x,par,args,endogenous=TRUE,...) <- value
##'
##' \method{constrain}{multigroup}(x,par,k=1,...) <- value
##'
##' constraints(object,data=model.frame(object),vcov=object$vcov,level=0.95,
##'                         p=pars.default(object),k,idx,...)
##'
##' @param x \code{lvm}-object
##' @param par Name of new parameter. Alternatively a formula with lhs
##' specifying the new parameter and the rhs defining the names of the
##' parameters or variable names defining the new parameter (overruling the
##' \code{args} argument).
##' @param args Vector of variables names or parameter names that are used in
##' defining \code{par}
##' @param endogenous TRUE if variable is endogenous (sink node)
##' @param k For multigroup models this argument specifies which group to
##' add/extract the constraint
##' @param value Real function taking args as a vector argument
##' @param object \code{lvm}-object
##' @param data Data-row from which possible non-linear constraints should be
##' calculated
##' @param vcov Variance matrix of parameter estimates
##' @param level Level of confidence limits
##' @param p Parameter vector
##' @param idx Index indicating which constraints to extract
##' @param \dots Additional arguments to be passed to the low level functions
"constrain<-" <- function(x,...,value) UseMethod("constrain<-")

##' @export
"constrain" <- function(x,...) UseMethod("constrain")

##' @export
constrain.default <- function(x, par, fun, idx, level=0.95, vcov, estimate=FALSE, ...) {
    if (!missing(par)) {
        constrain(x, par, ...) <- fun
        return(x)
    }
    if (estimate) {
        return(constraints(x,...))
    }
    if (missing(fun)) {
        if (inherits(Model(x),"multigroup")) {
            res <- list()
            for (m in Model(x)$lvm) {
                if (length(constrain(m))>0)
                    res <- c(res, constrain(m))
            }
            return(res)
        }
        return(Model(x)$constrain)
    }
    if (is.numeric(x)) {
        b <- x
    } else {
        b <- pars(x)
    }
    if (missing(vcov)) {
        S <- stats::vcov(x)
    } else {
        S <- vcov
    }
    if (!missing(idx)) {
        b <- b[idx]; S <- S[idx,idx,drop=FALSE]
    }
    fb <- fun(b)
    pl <- 1-(1-level)/2
    D <- rbind(numDeriv::grad(fun,b))
    se <- (D%*%S%*%t(D))^0.5
    res <- c(fb,se,fb+c(-1,1)*qnorm(pl)*c(se))
    pstr <- paste0(format(c(round(1000-1000*pl),round(pl*1000))/10),"%")
    names(res) <- c("Estimate","Std.Err",pstr)
    res
}

##' @export
"constrain<-.multigroupfit" <- function(x,par,k=1,...,value) {
        constrain(Model(x)$lvm[[k]],par=par,...) <- value
        return(x)
    }

##' @export
"constrain<-.multigroup" <- function(x,par,k=1,...,value) {
        constrain(Model(x)$lvm[[k]],par=par,...) <- value
        return(x)
    }

##' @export
"constrain<-.default" <- function(x,par,args,endogenous=TRUE,...,value) {
    if (inherits(par,"formula")) {
        lhs <- getoutcome(par)
        xf <- attributes(terms(par))$term.labels
        par <- lhs
        if (length(par)==0) {
          par <- xf
          xf <- NULL
        }
        if (par%in%vars(x)) {
            if (is.na(x$mean[[par]])) {
                intercept(x,par) <- par
            } else {
                par <- x$mean[[par]]
            }
        }
        args <- xf
    }
    if (is.null(value) || suppressWarnings(is.na(value))) {
        if (!is.null(par)) {
            Model(x)$constrain[[par]] <- NULL
            Model(x)$constrainY[[par]] <- NULL
        } else {
            Model(x)$constrain[[args]] <- NULL
        }
        return(x)
    }
    for (i in args) {
        if (!(i%in%c(parlabels(Model(x)), vars(Model(x)),
                     names(constrain(x))))) {
            if (lava.options()$messages>1)
                message("\tAdding parameter '", i, "'\n",sep="")
            parameter(x, messages=0) <- i
        }
    }
    if (par%in%vars(x) && endogenous) {
        if (!"..."%in%names(formals(value)) && !is.primitive(value)) {
            formals(value) <- c(formals(value), alist(...=))
        }
        Model(x)$constrainY[[par]] <- list(fun=value, args=args)
    } else {
        ## Wrap around do.call, since functions are not really
        ## parsed as call-by-value in R, and hence setting
        ## attributes to e.g. value=cos, will be overwritten
        ## if value=cos is used again later with new args.
        Model(x)$constrain[[par]] <- function(x) do.call(value, list(x))
        attributes(Model(x)$constrain[[par]])$args <- args
        index(Model(x)) <- reindex(Model(x))
    }
    return(x)
}

##' @export
constraints <- function(object,data=model.frame(object),vcov=object$vcov,level=0.95,
                 p=pars.default(object),k,idx,...) {
    if (class(object)[1]=="multigroupfit") {
        if (!missing(k)) {
            if (class(data)[1]=="list") data <- data[[k]]
            parpos <- modelPar(object, seq_len(length(p)))$p[[k]]
            if (nrow(data)>1 & !missing(idx)) {
                res <- t(apply(data, 1, function(x) constraints(Model(object)$lvm[[k]],data=x,p=p[parpos],vcov=vcov[parpos,parpos],level=level)[idx,]))
                return(res)
            }
            return(constraints(Model(object)$lvm[[k]],data=data,p=p[parpos],vcov=vcov[parpos,parpos],level=level))
        }
        return(attributes(CoefMat.multigroupfit(object,data=data,vcov=vcov,...))$nlincon)
    }

    if (NROW(data)>1 & !missing(idx)) {
        res <- t(apply(data,1,function(x) constraints(object,data=x,p=p,vcov=vcov,level=level)[idx,],...))
        return(res)
    }

    if (length(index(object)$constrain.par)<1) return(NULL)
    parpos <- Model(object)$parpos
    if (is.null(parpos)) {
        parpos <- with(index(object),matrices2(Model(object),seq_len(npar+npar.mean+npar.ex)))
        parpos$A[index(object)$M0==0] <- 0
        parpos$P[index(object)$P0==0] <- 0
        parpos$v[index(object)$v1==0] <- 0
        parpos$e[index(object)$e1==0] <- 0
    }
    myidx <- unlist(lapply(parpos$parval, function(x) {
        if (!is.null(attributes(x)$reg.idx)) {
            return(parpos$A[attributes(x)$reg.idx[1]])
        } else if (!is.null(attributes(x)$cov.idx)) {
            return(parpos$P[attributes(x)$cov.idx[1]])
        } else if (!is.null(attributes(x)$m.idx)) {
            return(parpos$v[attributes(x)$m.idx[1]])
        } else if (!is.null(attributes(x)$e.idx))
            return(parpos$e[attributes(x)$e.idx[1]])
        else NA
    }))
    names(myidx) <- names(parpos$parval)
    mynames <- c()
    N <- length(index(object)$constrain.par)
    if (N>0)
        res <- c()
    count <- 0
    mydata <- rbind(numeric(length(manifest(object))))
    colnames(mydata) <- manifest(object)
    data <- rbind(data)
    iname <- intersect(colnames(mydata),colnames(data))
    mydata[1,iname] <- unlist(data[1,iname])
    for (pp in index(object)$constrain.par) {
        count <- count+1
        myc <- constrain(Model(object))[[pp]]
        mycoef <- numeric(6)
        val.idx <- myidx[attributes(myc)$args]
        val.idx0 <- na.omit(val.idx)
        M <- modelVar(Model(object),p=p,data=as.data.frame(mydata))
        vals <- with(M,c(parval,constrainpar))[attributes(myc)$args]
        fval <- try(myc(unlist(vals)),silent=TRUE)
        fmat <- inherits(fval,"try-error")
        if (fmat) {
            fval <- myc(rbind(unlist(vals)))
        }
        mycoef[1] <- fval
        myc0 <- function(theta) {
            theta0 <- unlist(vals);
            theta0[!is.na(val.idx)] <- theta
            if (fmat) {
                res <- myc(rbind(theta0))
            } else {
                res <- myc(theta0)
            }
            return(res)
        }
        vals0 <- unlist(vals)[!is.na(val.idx)]
        if (length(vals0)==0)
            mycoef[2] <- NA
        else {
            if (!is.null(attributes(fval)$grad)) {
                if (fmat) {
                    Gr <- cbind(attributes(fval)$grad(rbind(unlist(vals0))))
                } else {
                    Gr <- cbind(attributes(fval)$grad(unlist(vals0)))
                }
            } else {
                if (fmat) {
                    Gr <- cbind(as.numeric(numDeriv::jacobian(myc0, unlist(vals0))))
                } else {
                    Gr <- cbind(as.numeric(numDeriv::jacobian(myc0, rbind(unlist(vals0)))))
                }
            }
            V <- vcov[val.idx0,val.idx0]
            mycoef[2] <- (t(Gr)%*%V%*%Gr)^0.5
        }
        ## if (second) {
        ##   if (!is.null(attributes(fval)$hessian)) {
        ##     H <- attributes(fval)$hessian(unlist(vals))
        ##   } else {
        ##     H <- hessian(myc, unlist(vals))
        ##   }
        ##   HV <- H%*%vcov[val.idx,val.idx]
        ##   mycoef[1] <- mycoef[1] + 0.5*sum(diag(HV))
        ##   mycoef[2] <- mycoef[2] + 0.5*sum(diag(HV%*%HV))
        ## }
        mycoef[3] <- mycoef[1]/mycoef[2]
        mycoef[4] <- 2*(pnorm(abs(mycoef[3]),lower.tail=FALSE))
        mycoef[5:6] <- mycoef[1] + c(1,-1)*qnorm((1-level)/2)*mycoef[2]
        res <- rbind(res,mycoef)
        mynames <- c(mynames,pp)
        if (!is.null(attributes(fval)$inv)){
            res2 <- attributes(fval)$inv(mycoef[c(1,5,6)])
            res <- rbind(res, c(res2[1],NA,NA,NA,res2[2],res2[3]))
            mynames <- c(mynames,paste0("inv(",pp,")"))
        }
    }
    rownames(res) <- mynames
    colnames(res) <- c("Estimate","Std. Error", "Z value", "Pr(>|z|)", "2.5%", "97.5%")
    return(res)
}