1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
|
##' Define range constraints of parameters
##'
##' @aliases Range.lvm
##' @title Define range constraints of parameters
##' @param a Lower bound
##' @param b Upper bound
##' @return function
##' @author Klaus K. Holst
##' @export
Range.lvm <- function(a=0,b=1) {
if (b==Inf) {
f <- function(x) {
res <- a+exp(x)
attributes(res)$grad <- exp
res
}
return(f)
}
if (a==-Inf) {
f <- function(x) {
res <- -exp(x)+b
attributes(res)$grad <- function(x) -exp(x)
res
}
return(f)
}
f <- function(x) {
res <- (a+b*exp(x))/(1+exp(x))
attributes(res)$grad <- function(x) exp(x)*(b-a-a*b*exp(x))/(1+exp(x))^2
res
}
return(f)
}
##' Add non-linear constraints to latent variable model
##'
##' Add non-linear constraints to latent variable model
##'
##' Add non-linear parameter constraints as well as non-linear associations
##' between covariates and latent or observed variables in the model (non-linear
##' regression).
##'
##' As an example we will specify the follow multiple regression model:
##'
##' \deqn{E(Y|X_1,X_2) = \alpha + \beta_1 X_1 + \beta_2 X_2} \deqn{V(Y|X_1,X_2)
##' = v}
##'
##' which is defined (with the appropiate parameter labels) as
##'
##' \code{m <- lvm(y ~ f(x,beta1) + f(x,beta2))}
##'
##' \code{intercept(m) <- y ~ f(alpha)}
##'
##' \code{covariance(m) <- y ~ f(v)}
##'
##' The somewhat strained parameter constraint \deqn{ v =
##' \frac{(beta1-beta2)^2}{alpha}}
##'
##' can then specified as
##'
##' \code{constrain(m,v ~ beta1 + beta2 + alpha) <- function(x)
##' (x[1]-x[2])^2/x[3] }
##'
##' A subset of the arguments \code{args} can be covariates in the model,
##' allowing the specification of non-linear regression models. As an example
##' the non-linear regression model \deqn{ E(Y\mid X) = \nu + \Phi(\alpha +
##' \beta X)} where \eqn{\Phi} denotes the standard normal cumulative
##' distribution function, can be defined as
##'
##' \code{m <- lvm(y ~ f(x,0)) # No linear effect of x}
##'
##' Next we add three new parameters using the \code{parameter} assigment
##' function:
##'
##' \code{parameter(m) <- ~nu+alpha+beta}
##'
##' The intercept of \eqn{Y} is defined as \code{mu}
##'
##' \code{intercept(m) <- y ~ f(mu)}
##'
##' And finally the newly added intercept parameter \code{mu} is defined as the
##' appropiate non-linear function of \eqn{\alpha}, \eqn{\nu} and \eqn{\beta}:
##'
##' \code{constrain(m, mu ~ x + alpha + nu) <- function(x)
##' pnorm(x[1]*x[2])+x[3]}
##'
##' The \code{constraints} function can be used to show the estimated non-linear
##' parameter constraints of an estimated model object (\code{lvmfit} or
##' \code{multigroupfit}). Calling \code{constrain} with no additional arguments
##' beyound \code{x} will return a list of the functions and parameter names
##' defining the non-linear restrictions.
##'
##' The gradient function can optionally be added as an attribute \code{grad} to
##' the return value of the function defined by \code{value}. In this case the
##' analytical derivatives will be calculated via the chain rule when evaluating
##' the corresponding score function of the log-likelihood. If the gradient
##' attribute is omitted the chain rule will be applied on a numeric
##' approximation of the gradient.
##' @aliases constrain constrain<- constrain.default constrain<-.multigroup
##' constrain<-.default constraints parameter<-
##' @return A \code{lvm} object.
##' @author Klaus K. Holst
##' @seealso \code{\link{regression}}, \code{\link{intercept}},
##' \code{\link{covariance}}
##' @keywords models regression
##' @examples
##' ##############################
##' ### Non-linear parameter constraints 1
##' ##############################
##' m <- lvm(y ~ f(x1,gamma)+f(x2,beta))
##' covariance(m) <- y ~ f(v)
##' d <- sim(m,100)
##' m1 <- m; constrain(m1,beta ~ v) <- function(x) x^2
##' ## Define slope of x2 to be the square of the residual variance of y
##' ## Estimate both restricted and unrestricted model
##' e <- estimate(m,d,control=list(method="NR"))
##' e1 <- estimate(m1,d)
##' p1 <- coef(e1)
##' p1 <- c(p1[1:2],p1[3]^2,p1[3])
##' ## Likelihood of unrestricted model evaluated in MLE of restricted model
##' logLik(e,p1)
##' ## Likelihood of restricted model (MLE)
##' logLik(e1)
##'
##' ##############################
##' ### Non-linear regression
##' ##############################
##'
##' ## Simulate data
##' m <- lvm(c(y1,y2)~f(x,0)+f(eta,1))
##' latent(m) <- ~eta
##' covariance(m,~y1+y2) <- "v"
##' intercept(m,~y1+y2) <- "mu"
##' covariance(m,~eta) <- "zeta"
##' intercept(m,~eta) <- 0
##' set.seed(1)
##' d <- sim(m,100,p=c(v=0.01,zeta=0.01))[,manifest(m)]
##' d <- transform(d,
##' y1=y1+2*pnorm(2*x),
##' y2=y2+2*pnorm(2*x))
##'
##' ## Specify model and estimate parameters
##' constrain(m, mu ~ x + alpha + nu + gamma) <- function(x) x[4]*pnorm(x[3]+x[1]*x[2])
##' \donttest{ ## Reduce Ex.Timings
##' e <- estimate(m,d,control=list(trace=1,constrain=TRUE))
##' constraints(e,data=d)
##' ## Plot model-fit
##' plot(y1~x,d,pch=16); points(y2~x,d,pch=16,col="gray")
##' x0 <- seq(-4,4,length.out=100)
##' lines(x0,coef(e)["nu"] + coef(e)["gamma"]*pnorm(coef(e)["alpha"]*x0))
##' }
##'
##' ##############################
##' ### Multigroup model
##' ##############################
##' ### Define two models
##' m1 <- lvm(y ~ f(x,beta)+f(z,beta2))
##' m2 <- lvm(y ~ f(x,psi) + z)
##' ### And simulate data from them
##' d1 <- sim(m1,500)
##' d2 <- sim(m2,500)
##' ### Add 'non'-linear parameter constraint
##' constrain(m2,psi ~ beta2) <- function(x) x
##' ## Add parameter beta2 to model 2, now beta2 exists in both models
##' parameter(m2) <- ~ beta2
##' ee <- estimate(list(m1,m2),list(d1,d2),control=list(method="NR"))
##' summary(ee)
##'
##' m3 <- lvm(y ~ f(x,beta)+f(z,beta2))
##' m4 <- lvm(y ~ f(x,beta2) + z)
##' e2 <- estimate(list(m3,m4),list(d1,d2),control=list(method="NR"))
##' e2
##' @export
##' @usage
##'
##' \method{constrain}{default}(x,par,args,endogenous=TRUE,...) <- value
##'
##' \method{constrain}{multigroup}(x,par,k=1,...) <- value
##'
##' constraints(object,data=model.frame(object),vcov=object$vcov,level=0.95,
##' p=pars.default(object),k,idx,...)
##'
##' @param x \code{lvm}-object
##' @param par Name of new parameter. Alternatively a formula with lhs
##' specifying the new parameter and the rhs defining the names of the
##' parameters or variable names defining the new parameter (overruling the
##' \code{args} argument).
##' @param args Vector of variables names or parameter names that are used in
##' defining \code{par}
##' @param endogenous TRUE if variable is endogenous (sink node)
##' @param k For multigroup models this argument specifies which group to
##' add/extract the constraint
##' @param value Real function taking args as a vector argument
##' @param object \code{lvm}-object
##' @param data Data-row from which possible non-linear constraints should be
##' calculated
##' @param vcov Variance matrix of parameter estimates
##' @param level Level of confidence limits
##' @param p Parameter vector
##' @param idx Index indicating which constraints to extract
##' @param \dots Additional arguments to be passed to the low level functions
"constrain<-" <- function(x,...,value) UseMethod("constrain<-")
##' @export
"constrain" <- function(x,...) UseMethod("constrain")
##' @export
constrain.default <- function(x, par, fun, idx, level=0.95, vcov, estimate=FALSE, ...) {
if (!missing(par)) {
constrain(x, par, ...) <- fun
return(x)
}
if (estimate) {
return(constraints(x,...))
}
if (missing(fun)) {
if (inherits(Model(x),"multigroup")) {
res <- list()
for (m in Model(x)$lvm) {
if (length(constrain(m))>0)
res <- c(res, constrain(m))
}
return(res)
}
return(Model(x)$constrain)
}
if (is.numeric(x)) {
b <- x
} else {
b <- pars(x)
}
if (missing(vcov)) {
S <- stats::vcov(x)
} else {
S <- vcov
}
if (!missing(idx)) {
b <- b[idx]; S <- S[idx,idx,drop=FALSE]
}
fb <- fun(b)
pl <- 1-(1-level)/2
D <- rbind(numDeriv::grad(fun,b))
se <- (D%*%S%*%t(D))^0.5
res <- c(fb,se,fb+c(-1,1)*qnorm(pl)*c(se))
pstr <- paste0(format(c(round(1000-1000*pl),round(pl*1000))/10),"%")
names(res) <- c("Estimate","Std.Err",pstr)
res
}
##' @export
"constrain<-.multigroupfit" <- function(x,par,k=1,...,value) {
constrain(Model(x)$lvm[[k]],par=par,...) <- value
return(x)
}
##' @export
"constrain<-.multigroup" <- function(x,par,k=1,...,value) {
constrain(Model(x)$lvm[[k]],par=par,...) <- value
return(x)
}
##' @export
"constrain<-.default" <- function(x,par,args,endogenous=TRUE,...,value) {
if (inherits(par,"formula")) {
lhs <- getoutcome(par)
xf <- attributes(terms(par))$term.labels
par <- lhs
if (length(par)==0) {
par <- xf
xf <- NULL
}
if (par%in%vars(x)) {
if (is.na(x$mean[[par]])) {
intercept(x,par) <- par
} else {
par <- x$mean[[par]]
}
}
args <- xf
}
if (is.null(value) || suppressWarnings(is.na(value))) {
if (!is.null(par)) {
Model(x)$constrain[[par]] <- NULL
Model(x)$constrainY[[par]] <- NULL
} else {
Model(x)$constrain[[args]] <- NULL
}
return(x)
}
for (i in args) {
if (!(i%in%c(parlabels(Model(x)), vars(Model(x)),
names(constrain(x))))) {
if (lava.options()$messages>1)
message("\tAdding parameter '", i, "'\n",sep="")
parameter(x, messages=0) <- i
}
}
if (par%in%vars(x) && endogenous) {
if (!"..."%in%names(formals(value)) && !is.primitive(value)) {
formals(value) <- c(formals(value), alist(...=))
}
Model(x)$constrainY[[par]] <- list(fun=value, args=args)
} else {
## Wrap around do.call, since functions are not really
## parsed as call-by-value in R, and hence setting
## attributes to e.g. value=cos, will be overwritten
## if value=cos is used again later with new args.
Model(x)$constrain[[par]] <- function(x) do.call(value, list(x))
attributes(Model(x)$constrain[[par]])$args <- args
index(Model(x)) <- reindex(Model(x))
}
return(x)
}
##' @export
constraints <- function(object,data=model.frame(object),vcov=object$vcov,level=0.95,
p=pars.default(object),k,idx,...) {
if (class(object)[1]=="multigroupfit") {
if (!missing(k)) {
if (class(data)[1]=="list") data <- data[[k]]
parpos <- modelPar(object, seq_len(length(p)))$p[[k]]
if (nrow(data)>1 & !missing(idx)) {
res <- t(apply(data, 1, function(x) constraints(Model(object)$lvm[[k]],data=x,p=p[parpos],vcov=vcov[parpos,parpos],level=level)[idx,]))
return(res)
}
return(constraints(Model(object)$lvm[[k]],data=data,p=p[parpos],vcov=vcov[parpos,parpos],level=level))
}
return(attributes(CoefMat.multigroupfit(object,data=data,vcov=vcov,...))$nlincon)
}
if (NROW(data)>1 & !missing(idx)) {
res <- t(apply(data,1,function(x) constraints(object,data=x,p=p,vcov=vcov,level=level)[idx,],...))
return(res)
}
if (length(index(object)$constrain.par)<1) return(NULL)
parpos <- Model(object)$parpos
if (is.null(parpos)) {
parpos <- with(index(object),matrices2(Model(object),seq_len(npar+npar.mean+npar.ex)))
parpos$A[index(object)$M0==0] <- 0
parpos$P[index(object)$P0==0] <- 0
parpos$v[index(object)$v1==0] <- 0
parpos$e[index(object)$e1==0] <- 0
}
myidx <- unlist(lapply(parpos$parval, function(x) {
if (!is.null(attributes(x)$reg.idx)) {
return(parpos$A[attributes(x)$reg.idx[1]])
} else if (!is.null(attributes(x)$cov.idx)) {
return(parpos$P[attributes(x)$cov.idx[1]])
} else if (!is.null(attributes(x)$m.idx)) {
return(parpos$v[attributes(x)$m.idx[1]])
} else if (!is.null(attributes(x)$e.idx))
return(parpos$e[attributes(x)$e.idx[1]])
else NA
}))
names(myidx) <- names(parpos$parval)
mynames <- c()
N <- length(index(object)$constrain.par)
if (N>0)
res <- c()
count <- 0
mydata <- rbind(numeric(length(manifest(object))))
colnames(mydata) <- manifest(object)
data <- rbind(data)
iname <- intersect(colnames(mydata),colnames(data))
mydata[1,iname] <- unlist(data[1,iname])
for (pp in index(object)$constrain.par) {
count <- count+1
myc <- constrain(Model(object))[[pp]]
mycoef <- numeric(6)
val.idx <- myidx[attributes(myc)$args]
val.idx0 <- na.omit(val.idx)
M <- modelVar(Model(object),p=p,data=as.data.frame(mydata))
vals <- with(M,c(parval,constrainpar))[attributes(myc)$args]
fval <- try(myc(unlist(vals)),silent=TRUE)
fmat <- inherits(fval,"try-error")
if (fmat) {
fval <- myc(rbind(unlist(vals)))
}
mycoef[1] <- fval
myc0 <- function(theta) {
theta0 <- unlist(vals);
theta0[!is.na(val.idx)] <- theta
if (fmat) {
res <- myc(rbind(theta0))
} else {
res <- myc(theta0)
}
return(res)
}
vals0 <- unlist(vals)[!is.na(val.idx)]
if (length(vals0)==0)
mycoef[2] <- NA
else {
if (!is.null(attributes(fval)$grad)) {
if (fmat) {
Gr <- cbind(attributes(fval)$grad(rbind(unlist(vals0))))
} else {
Gr <- cbind(attributes(fval)$grad(unlist(vals0)))
}
} else {
if (fmat) {
Gr <- cbind(as.numeric(numDeriv::jacobian(myc0, unlist(vals0))))
} else {
Gr <- cbind(as.numeric(numDeriv::jacobian(myc0, rbind(unlist(vals0)))))
}
}
V <- vcov[val.idx0,val.idx0]
mycoef[2] <- (t(Gr)%*%V%*%Gr)^0.5
}
## if (second) {
## if (!is.null(attributes(fval)$hessian)) {
## H <- attributes(fval)$hessian(unlist(vals))
## } else {
## H <- hessian(myc, unlist(vals))
## }
## HV <- H%*%vcov[val.idx,val.idx]
## mycoef[1] <- mycoef[1] + 0.5*sum(diag(HV))
## mycoef[2] <- mycoef[2] + 0.5*sum(diag(HV%*%HV))
## }
mycoef[3] <- mycoef[1]/mycoef[2]
mycoef[4] <- 2*(pnorm(abs(mycoef[3]),lower.tail=FALSE))
mycoef[5:6] <- mycoef[1] + c(1,-1)*qnorm((1-level)/2)*mycoef[2]
res <- rbind(res,mycoef)
mynames <- c(mynames,pp)
if (!is.null(attributes(fval)$inv)){
res2 <- attributes(fval)$inv(mycoef[c(1,5,6)])
res <- rbind(res, c(res2[1],NA,NA,NA,res2[2],res2[3]))
mynames <- c(mynames,paste0("inv(",pp,")"))
}
}
rownames(res) <- mynames
colnames(res) <- c("Estimate","Std. Error", "Z value", "Pr(>|z|)", "2.5%", "97.5%")
return(res)
}
|