1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
|
##' Identify candidates of equivalent models
##'
##' Identifies candidates of equivalent models
##'
##'
##' @param x \code{lvmfit}-object
##' @param rel Formula or character-vector specifying two variables to omit from
##' the model and subsequently search for possible equivalent models
##' @param tol Define two models as empirical equivalent if the absolute
##' difference in score test is less than \code{tol}
##' @param k Number of parameters to test simultaneously. For \code{equivalence}
##' the number of additional associations to be added instead of \code{rel}.
##' @param omitrel if \code{k} greater than 1, this boolean defines wether to
##' omit candidates containing \code{rel} from the output
##' @param \dots Additional arguments to be passed to the lower-level functions
##' @author Klaus K. Holst
##' @seealso \code{\link{compare}}, \code{\link{modelsearch}}
##' @export
equivalence <- function(x,rel,tol=1e-3,k=1,omitrel=TRUE,...) {
if (missing(rel)) stop("Specify association 'rel' (formula or character vector)")
if (inherits(rel,"formula")) {
myvars <- all.vars(rel)
} else {
myvars <- rel
}
if (length(myvars)!=2) stop("Two variables only")
x0 <- Model(x)
cancel(x0) <- rel
e0 <- estimate(x0,data=model.frame(x),weights=Weights(x),estimator=x$estimator,...)
if (k!=1) {
p0 <- coef(x)
p0[] <- 0
p0[match(names(coef(e0)),names(p0))] <- coef(e0)
S0 <- score(x,p=p0)[,,drop=TRUE];
I0 <- information(x,p=p0)
T0 <- rbind(S0)%*%solve(I0)%*%cbind(S0); names(T0) <- "Q"
}
s <- modelsearch(e0,k=k,...)
relname <- c(paste(myvars,collapse=lava.options()$symbol[2]),
paste(rev(myvars),collapse=lava.options()$symbol[2]))
relidx <- NULL
if (k==1) {
relidx <- na.omit(match(relname,s$res[,"Index"]))
T0 <- s$test[relidx,1]
}
T <- s$test[,1]
Equiv <- setdiff(which(abs(T-T0)<tol),relidx)
Improve <- which((T-T0)>tol)
if (omitrel) { ## Don't save models including 'rel'
keep <- c()
if (length(Equiv)>0) {
for (i in seq_len(length(Equiv))) {
newvars <- s$var[[Equiv[i]]]
if (!any(apply(newvars,1,function(z) all(z%in%myvars)))) keep <- c(keep,Equiv[i])
}
Equiv <- keep
}
keep <- c()
if (length(Improve)>0) {
for (i in seq_len(length(Improve))) {
newvars <- s$var[[Improve[i]]]
if (!any(apply(newvars,1,function(z) all(z%in%myvars)))) keep <- c(keep,Improve[i])
}
Improve <- keep
}
}
eqvar <- ivar <- NULL
models <- list()
if (length(Equiv)>0){
for (i in seq_len(length(Equiv))) {
xnew <- x0
newvars <- s$var[[Equiv[i]]]
for (j in seq_len(nrow(newvars))) {
exo.idx <- which(newvars[j,]%in%index(x0)$exogenous)
if (length(exo.idx)>0) {
xnew <- regression(xnew,from=newvars[j,exo.idx],to=newvars[j,setdiff(1:2,exo.idx)])
} else {
covariance(xnew) <- newvars
}
}
models <- c(models,list(xnew))
}
eqvar <- s$var[Equiv]
}
if (length(Improve)>0) {
for (i in seq_len(length(Improve))) {
xnew <- x0
newvars <- s$var[[Improve[i]]]
for (j in seq_len(nrow(newvars))) {
exo.idx <- which(newvars[j,]%in%index(x0)$exogenous)
if (length(exo.idx)>0) {
xnew <- regression(xnew,from=newvars[j,exo.idx],to=newvars[j,setdiff(1:2,exo.idx)])
} else {
covariance(xnew) <- newvars
}
}
models <- c(models,list(xnew))
}
ivar <- s$var[Improve]
}
res <- list(equiv=eqvar, improve=ivar, scoretest=s, models=models, I=Improve, E=Equiv, T0=T0, vars=myvars)
class(res) <- "equivalence"
return(res)
}
##' @export
print.equivalence <- function(x,...) {
cat(" 0)\t ",paste0(x$vars,collapse=lava.options()$symbol[2])," (",formatC(x$T0),")\n")
cat("Empirical equivalent models:\n")
if (length(x$E)==0)
cat("\t none\n")
else
for (i in seq_len(length(x$E))) {
cat(" ",i,")\t ", x$scoretest$res[x$E[i],"Index"],
" (",x$scoretest$res[x$E[i],1],")",
"\n",sep="")
}
cat("Candidates for model improvement:\n")
if (length(x$I)==0)
cat("\t none\n")
else
for (i in seq_len(length(x$I))) {
cat(" ",i,")\t ", x$scoretest$res[x$I[i],"Index"],
" (",x$scoretest$res[x$I[i],1],")",
"\n",sep="")
}
invisible(x)
}
holm <- function(p) {
k <- length(p)
w <- 1/k
ii <- order(p)
po <- p[ii]
qs <- min(1,po[1]/w)
for (i in 2:k) {
qs <- c(qs, min(1, max(qs[i-1],po[i]*(1-w*(i-1))/w)))
}
return(qs)
}
|