File: equivalence.R

package info (click to toggle)
r-cran-lava 1.8.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,816 kB
  • sloc: sh: 13; makefile: 2
file content (140 lines) | stat: -rw-r--r-- 5,036 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
##' Identify candidates of equivalent models
##'
##' Identifies candidates of equivalent models
##'
##'
##' @param x \code{lvmfit}-object
##' @param rel Formula or character-vector specifying two variables to omit from
##' the model and subsequently search for possible equivalent models
##' @param tol Define two models as empirical equivalent if the absolute
##' difference in score test is less than \code{tol}
##' @param k Number of parameters to test simultaneously. For \code{equivalence}
##' the number of additional associations to be added instead of \code{rel}.
##' @param omitrel if \code{k} greater than 1, this boolean defines wether to
##' omit candidates containing \code{rel} from the output
##' @param \dots Additional arguments to be passed to the lower-level functions
##' @author Klaus K. Holst
##' @seealso \code{\link{compare}}, \code{\link{modelsearch}}
##' @export
equivalence <- function(x,rel,tol=1e-3,k=1,omitrel=TRUE,...) {
    if (missing(rel)) stop("Specify association 'rel' (formula or character vector)")
    if (inherits(rel,"formula")) {
        myvars <- all.vars(rel)
    } else {
        myvars <- rel
    }
    if (length(myvars)!=2) stop("Two variables only")
    x0 <- Model(x)
    cancel(x0) <- rel
    e0 <- estimate(x0,data=model.frame(x),weights=Weights(x),estimator=x$estimator,...)
    if (k!=1) {
        p0 <- coef(x)
        p0[] <- 0
        p0[match(names(coef(e0)),names(p0))] <- coef(e0)
        S0 <- score(x,p=p0)[,,drop=TRUE];
        I0 <- information(x,p=p0)
        T0 <- rbind(S0)%*%solve(I0)%*%cbind(S0); names(T0) <- "Q"
    }
    s <- modelsearch(e0,k=k,...)
    relname <- c(paste(myvars,collapse=lava.options()$symbol[2]),
                 paste(rev(myvars),collapse=lava.options()$symbol[2]))
    relidx <- NULL
    if (k==1) {
        relidx <- na.omit(match(relname,s$res[,"Index"]))
        T0 <- s$test[relidx,1]
    }
    T <- s$test[,1]
    Equiv <- setdiff(which(abs(T-T0)<tol),relidx)
    Improve <- which((T-T0)>tol)
    if (omitrel) { ## Don't save models including 'rel'
        keep <- c()
        if (length(Equiv)>0) {
            for (i in seq_len(length(Equiv))) {
                newvars <- s$var[[Equiv[i]]]
                if (!any(apply(newvars,1,function(z) all(z%in%myvars)))) keep <- c(keep,Equiv[i])
            }
            Equiv <- keep
        }
        keep <- c()
        if (length(Improve)>0) {
            for (i in seq_len(length(Improve))) {
                newvars <- s$var[[Improve[i]]]
                if (!any(apply(newvars,1,function(z) all(z%in%myvars)))) keep <- c(keep,Improve[i])
            }
            Improve <- keep
        }
    }
    eqvar <- ivar <- NULL
    models <- list()
    if (length(Equiv)>0){
        for (i in seq_len(length(Equiv))) {
            xnew <- x0
            newvars <- s$var[[Equiv[i]]]
            for (j in seq_len(nrow(newvars))) {
                exo.idx <- which(newvars[j,]%in%index(x0)$exogenous)
                if (length(exo.idx)>0) {
                    xnew <- regression(xnew,from=newvars[j,exo.idx],to=newvars[j,setdiff(1:2,exo.idx)])
                } else {
                    covariance(xnew) <- newvars
                }
            }
            models <- c(models,list(xnew))
        }
        eqvar <- s$var[Equiv]
    }
    if (length(Improve)>0)   {
        for (i in seq_len(length(Improve))) {
            xnew <- x0
            newvars <- s$var[[Improve[i]]]
            for (j in seq_len(nrow(newvars))) {
                exo.idx <- which(newvars[j,]%in%index(x0)$exogenous)
                if (length(exo.idx)>0) {
                    xnew <- regression(xnew,from=newvars[j,exo.idx],to=newvars[j,setdiff(1:2,exo.idx)])
                } else {
                    covariance(xnew) <- newvars
                }
            }
            models <- c(models,list(xnew))
        }
        ivar <- s$var[Improve]
    }
    res <- list(equiv=eqvar, improve=ivar, scoretest=s, models=models, I=Improve, E=Equiv, T0=T0, vars=myvars)
    class(res) <- "equivalence"
    return(res)
}

##' @export
print.equivalence <- function(x,...) {
    cat("  0)\t ",paste0(x$vars,collapse=lava.options()$symbol[2]),"  (",formatC(x$T0),")\n")
    cat("Empirical equivalent models:\n")
    if (length(x$E)==0)
        cat("\t none\n")
    else
        for (i in seq_len(length(x$E))) {
            cat("  ",i,")\t ",  x$scoretest$res[x$E[i],"Index"],
                "  (",x$scoretest$res[x$E[i],1],")",
                "\n",sep="")
        }
    cat("Candidates for model improvement:\n")
    if (length(x$I)==0)
        cat("\t none\n")
    else
        for (i in seq_len(length(x$I))) {
            cat("  ",i,")\t ",  x$scoretest$res[x$I[i],"Index"],
                "  (",x$scoretest$res[x$I[i],1],")",
                "\n",sep="")
        }
    invisible(x)
}

holm <- function(p) {
    k <- length(p)
    w <- 1/k
    ii <- order(p)
    po <- p[ii]
    qs <- min(1,po[1]/w)
    for (i in 2:k) {
        qs <- c(qs, min(1, max(qs[i-1],po[i]*(1-w*(i-1))/w)))
    }
    return(qs)
}