File: index.sem.R

package info (click to toggle)
r-cran-lava 1.8.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,816 kB
  • sloc: sh: 13; makefile: 2
file content (296 lines) | stat: -rw-r--r-- 11,884 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
##' @export
updatelvm <- function(x,mean=TRUE,...) {
    index(x) <- reindex(x,mean=mean,...)
    x$parpos <- parpos(x,mean=mean,...)
    return(x)
}

##' @export
"index" <- function(x,...) UseMethod("index")

##' @export
"index<-" <- function(x,...,value) UseMethod("index<-")

##' @export
"index.lvm" <- function(x,...) { x$index }

##' @export
"index.lvmfit" <- function(x,...) { index(Model(x)) }

##' @export
"index<-.lvm" <- function(x,...,value)  { x$index <- value; return(x) }

##' @export
"index<-.lvmfit" <- function(x,...,value) { Model(x)$index <- value; return(x) }


###   A  ## Matrix with fixed parameters and ones where parameters are free
###   J  ## Manifest variable selection matrix
###   M0 ## Index of free regression parameters
###   M1 ## Index of free and _unique_ regression parameters
###   P  ## Matrix with fixed variance parameters and ones where parameters are free
###   P0 ## Index of free variance parameters
###   P1 ## Index of free and _unique_ regression parameters
###   npar.var  ## Number of covariance parameters
##' @export
`reindex` <-
    function(x, sparse=FALSE,standard=TRUE,zeroones=FALSE,deriv=FALSE,mean=TRUE) { ## Extract indices of parameters from model
        x$parpos <- NULL
        M <- x$M

        eta <- latent(x) ## Latent variables/Factors
        m <- length(eta)
        obs <- manifest(x)  ## Manifest/Observed variables
        endo <- endogenous(x)
        exo <- exogenous(x) ##,index=FALSE)

        allvars <- vars(x)
        eta.idx <- na.omit(match(eta,allvars))
        obs.idx <- na.omit(match(obs,allvars))
        exo.idx <- na.omit(match(exo,allvars))
        exo.obsidx <- na.omit(match(exo,obs))
        endo.obsidx <- na.omit(match(endo,obs))

        fix.idx <- !is.na(x$fix) ## Index of fixed parameters
        covfix.idx <- !is.na(x$covfix) ## Index of fixed covariance parameters

        constrain.par <- NULL
        if (length(constrain(x))>0) constrain.par <- names(constrain(x))

        M0 <- M;  M0[fix.idx] <- 0 ## Matrix of indicators of free regression-parameters (removing fixed parameters)
        M1 <- M0; ## Matrix of indiciator of free _unique_ regression parameters (removing fixed _and_ duplicate parameters)
        parname <- unique(x$par[!is.na(x$par)])
        for (p in parname) {
            ii <- which(x$par==p)
            if (length(ii)>1)
                M1[ii[-1]] <- 0
            if (p %in% constrain.par)
                M0[ii] <- M1[ii] <- 0
        }
        npar.reg <- sum(M1) ## Number of free regression parameters

        P <- x$cov;

        P0 <- P;  P0[covfix.idx] <- 0 ## Matrix of indicators of free covariance-parameters (removing fixed parameters)
        if (length(exo.idx)>0)
            P0[exo.idx,exo.idx] <- 0 ## 6/1-2011
        P1 <- P0 ## Matrix of indiciator of free _unique_ variance parameters (removing fixed _and_ duplicate parameters)
        covparname <- unique(x$covpar[!is.na(x$covpar)])
        for (p in covparname) {
            ii <- which(x$covpar==p)
            if (length(ii)>1)
                P1[ii[-1]] <- 0
            if (p%in%c(parname,constrain.par))
                P0[ii] <- P1[ii] <- 0
        }

        npar.var <- sum(c(diag(P1),P1[lower.tri(P1)]))

        A <- M
        A[fix.idx] <- x$fix[fix.idx] ## ... with fixed parameters in plac
        P[covfix.idx] <- x$covfix[covfix.idx] ## ... with fixed parameters in plac

        px <- Jy <- J <- diag(nrow=length(vars(x)))
        if (m>0) {
            J[eta.idx,eta.idx] <- 0; J <- J[-eta.idx,,drop=FALSE]
        } ## Selection matrix (selecting observed variables)
        {
            ## Selection matrix (selection endogenous variables)
            if (length(c(eta.idx,exo.idx))>0) {
                Jy[c(eta.idx,exo.idx),c(eta.idx,exo.idx)] <- 0; Jy <- Jy[-c(eta.idx,exo.idx),,drop=FALSE]
            }
            ## Cancelation matrix (cancels rows with exogenous variables)
            px[exo.idx,exo.idx] <- 0
        }

        ## Creating indicitor of free mean-parameters
        fixed <- sapply(x$mean, function(y) is.numeric(y) & !is.na(y))
        named <- sapply(x$mean, function(y) is.character(y) & !is.na(y))
        mparname <- NULL
        if (length(named)>0)
            mparname <- unlist(unique(x$mean[named]))
        v0 <- rep(1,length(x$mean)) ## Vector of indicators of free mean-parameters

        v0[exo.idx] <- 0
        if (length(fixed)>0) v0[fixed] <- 0;
        v1 <- v0
        for (p in mparname) {
            idx <- which(x$mean==p)
            if (length(idx)>1) {
                v1[idx[-1]] <- 0
            }
            if (p%in%c(parname,covparname,constrain.par))
                v0[idx] <- v1[idx] <- 0
        } ## duplicate parameters

        ###
        ### Extra parameters
        ###
        efixed <- sapply(x$exfix, function(y) is.numeric(y) & !is.na(y))
        enamed <- sapply(x$exfix, function(y) is.character(y) & !is.na(y))
        if(length(enamed)>0){
            eparname <- unlist(unique(x$exfix[enamed]))
        } else{
            eparname <- NULL
        }
        ## Extra parameters
        e0 <- rep(1,length(x$expar)) ## Indicators of free extra par.
        if (length(efixed)>0)
            e0[efixed] <- 0
        e1 <- e0
        for (p in eparname) {
            idx <- which(x$exfix==p)
            if (length(idx)>1) {
                e1[idx[-1]] <- 0
            }
            if (p%in%c(parname,covparname,constrain.par,mparname))
                e0[idx] <- e1[idx] <- 0
        } ## duplicate parameters


        ## Return:
        ## Adjacency-matrix (M)
        ## Matrix of regression-parameters (0,1) _with_ fixed parameters (A)
        ## Matrix of variance-parameters (indicators 0,1) (P)
        ## Manifest selection matrix (J),
        ## Position of variables matrix (Apos),
        ## Position of covariance variables matrix (Ppos),
        ## Position/Indicator matrix of free regression parameters (M0)
        res <- list(vars=allvars, manifest=obs, exogenous=exo, latent=eta,
                    endogenous=endo,
                    exo.idx=exo.idx, eta.idx=eta.idx,
                    exo.obsidx=exo.obsidx, endo.obsidx=endo.obsidx,
                    obs.idx=obs.idx,
                    endo.idx=setdiff(obs.idx,exo.idx))

        if (standard) {
            res <- c(res, list(M=M, A=A, P=P,
                               P0=P0, P1=P1,
                               M0=M0, M1=M1,
                               v0=v0, v1=v1,
                               e0=e0, e1=e1,
                               npar=(npar.reg+npar.var),
                               npar.reg=npar.reg,
                               npar.var=npar.var,
                               npar.mean=sum(v1),
                               npar.ex=sum(e1),
                               constrain.par=constrain.par))
            which.diag <- NULL
            if (length(P1)>0)
                which.diag <- which(diag(P1==1))

            res <- c(res, list(parname.all=parname, parname=setdiff(parname,constrain.par),
                               which.diag=which.diag,
                               covparname.all=covparname,
                               covparname=setdiff(covparname,constrain.par),
                               meanfixed=fixed, meannamed=named,
                               mparname.all=mparname,
                               mparname=setdiff(mparname,constrain.par),
                               eparname.all=eparname,
                               eparname=setdiff(eparname,constrain.par),
                               J=J, Jy=Jy, px=px, sparse=sparse))

            parname.all.reg.idx <- parname.all.reg.tidx <-
                parname.reg.tidx <- parname.reg.idx <- c()
            for (p in res$parname.all) {
                ipos <- which((x$par==p))
                tipos <- which(t(x$par==p))
                if (p%in%res$parname) {
                    parname.reg.idx <- c(parname.reg.idx, list(ipos))
                    parname.reg.tidx <- c(parname.reg.tidx, list(tipos))
                }
                parname.all.reg.idx <- c(parname.all.reg.idx, list(ipos))
                parname.all.reg.tidx <- c(parname.all.reg.tidx, list(tipos))
            };
            if (length(parname.reg.idx)>0) {
                names(parname.reg.idx) <- names(parname.reg.tidx) <- res$parname
            }
            if (length(parname.all.reg.idx)>0) {
                names(parname.all.reg.idx) <- names(parname.all.reg.tidx) <- res$parname.all
            }
            covparname.all.idx <- covparname.idx <- c()
            for (p in res$covparname.all) {
                ipos <- which(x$covpar==p)
                if (p%in%res$covparname)
                    covparname.idx <- c(covparname.idx, list(ipos))
                covparname.all.idx <- c(covparname.all.idx, list(ipos))
            };
            if (length(covparname.idx)>0)
                names(covparname.idx) <- res$covparname
            if (length(covparname.all.idx)>0)
                names(covparname.all.idx) <- res$covparname.all

            mparname.all.idx <- mparname.idx <- c()
            for (p in res$mparname.all) {
                ipos <- which(x$mean==p)
                if (p%in%mparname)
                    mparname.idx <- c(mparname.idx, list(ipos))
                mparname.all.idx <- c(mparname.all.idx, list(ipos))
            };
            if (length(mparname.idx)>0)
                names(mparname.idx) <- res$mparname
            if (length(mparname.all.idx)>0)
                names(mparname.all.idx) <- res$mparname.all

            eparname.all.idx <- eparname.idx <- c()
            for (p in res$eparname.all) {
                ipos <- which(x$exfix==p)
                if (p%in%eparname)
                    eparname.idx <- c(eparname.idx, list(ipos))
                eparname.all.idx <- c(eparname.all.idx, list(ipos))
            };
            if (length(eparname.idx)>0)
                names(eparname.idx) <- res$eparname
            if (length(eparname.all.idx)>0)
                names(eparname.all.idx) <- res$eparname.all


            res <- c(res, list(mparname.idx=mparname.idx,
                               covparname.idx=covparname.idx,
                               parname.reg.idx=parname.reg.idx,
                               parname.reg.tidx=parname.reg.tidx,
                               mparname.all.idx=mparname.all.idx,
                               eparname.all.idx=eparname.all.idx,
                               covparname.all.idx=covparname.all.idx,
                               parname.all.reg.idx=parname.all.reg.idx,
                               parname.all.reg.tidx=parname.all.reg.tidx
                               ))

        } else {
            res <- index(x)
        }

        if (zeroones) {
            if (sparse) {
                if (!requireNamespace("Matrix",quietly=TRUE)) stop("package Matrix not available")
                Ik <- Matrix::Diagonal(length(obs))
                Im <- Matrix::Diagonal(ncol(A))
                Kkk <- NULL
                J <- as(J, "sparseMatrix")
                Jy <- as(Jy, "sparseMatrix")
                px <- as(px, "sparseMatrix")

            } else {
                Ik <- diag(nrow=length(obs))
                Im <- diag(nrow=ncol(A))
            }
            Kkk <- NULL


            res[c("Ik","Im","Kkk")] <- NULL
            res <- c(res, list(Ik=Ik, Im=Im, Kkk=Kkk))
        }
        if (deriv && length(P)>0) {
            if (res$npar.mean>0 & mean)
                D <- deriv.lvm(x,meanpar=rep(1,res$npar.mean),zeroones=TRUE)
            else
                D <- deriv.lvm(x,meanpar=NULL,zeroones=TRUE)
            res[c("dA","dP","dv")] <- NULL
            res <- c(res, list(dA=D$dA, dP=D$dP, dv=D$dv))
        }

        if (length(P)>0)
            res <- c(res,mat.lvm(x,res))

        return(res)
    }