1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
###{{{ multigroup
##' @export
multigroup <- function(models, datasets, fix, exo.fix=TRUE, keep=NULL, missing=FALSE, ...) {
nm <- length(models)
if (nm!=length(datasets)) stop("Supply dataset for each model")
if (nm<2) stop("Two or more groups neeeded")
mynames <- names(models)
## Check for random slopes
xfix <- list()
for (i in seq_len(nm)) {
x0 <- models[[i]]
data0 <- datasets[[i]]
xfix0 <- colnames(data0)[(colnames(data0)%in%parlabels(x0,exo=TRUE))]
xfix <- c(xfix, list(xfix0))
}
if (missing(fix)) {
fix <- !any(unlist(lapply(xfix, function(x) length(x)>0)))
}
for (i in seq_len(nm)) {
x0 <- models[[i]]
data0 <- datasets[[i]]
if (length(exogenous(x0)>0)) {
catx <- categorical2dummy(x0,data0)
models[[i]] <- catx$x; datasets[[i]] <- catx$data
}
if (!lava.options()$exogenous) exogenous(models[[i]]) <- NULL
}
models.orig <- NULL
######################
### MLE with MAR mechanism
######################
if (missing) {
reservedpars <- c()
mynpar <- c()
for (i in seq_len(nm)) {
## Fix some parameters (predictors,latent variables,...)
d0 <- datasets[[i]][1,,drop=FALSE]; d0[,] <- 1
if (fix)
models[[i]] <- fixsome(models[[i]], exo.fix=exo.fix, measurement.fix=fix, data=d0)
## Find named/labelled parameters
rpar <- unique(parlabels(models[[i]]))
reservedpars <- c(reservedpars, rpar)
mynpar <- c(mynpar, with(index(models[[1]]), npar+npar.mean+npar.ex))
}; reservedpars <- unique(reservedpars)
nonamepar <- sum(mynpar)
## Find unique parameter-names for all parameters
newpars <- c()
i <- 0
pos <- 1
while(pos<=nonamepar) {
i <- i+1
newname <- paste0("par",i)
if (!(newname%in%reservedpars)) {
newpars <- c(newpars,newname)
pos <- pos+1
}
}
pos <- 0
models0 <- list()
datasets0 <- list()
complidx <- c()
nmodels <- 0
modelclass <- c()
nmis <- c()
for (i in seq_len(nm)) {
myvars <- unlist(intersect(colnames(datasets[[i]]),c(vars(models[[i]]),xfix[[i]],keep)))
mydata <- datasets[[i]][,myvars]
if (any(is.na(mydata))) {
if (i>1) pos <- pos+mynpar[i-1]
models[[i]] <- baptize(models[[i]],newpars[pos+seq_len(mynpar[i])] ,overwrite=FALSE)
val <- missingModel(models[[i]],mydata,fix=FALSE,keep=keep,...)
nmodels <- c(nmodels,length(val$models))
complidx <- c(complidx,val$pattern.allcomp+nmodels[i]+1)
nmis0 <- rowSums(val$patterns);
allmis <- which(nmis0==ncol(val$patterns))
if (length(allmis)>0) nmis0 <- nmis0[-allmis]
nmis <- c(nmis,nmis0)
datasets0 <- c(datasets0, val$datasets)
models0 <- c(models0, val$models)
modelclass <- c(modelclass,rep(i,length(val$models)))
} else {
datasets0 <- c(datasets0, list(mydata))
models0 <- c(models0, list(models[[i]]))
modelclass <- c(modelclass,i)
nmis <- c(nmis,0)
}
}
models.orig <- models
suppressWarnings(
val <- multigroup(models0,datasets0,fix=FALSE,missing=FALSE,exo.fix=TRUE,...)
)
val$models.orig <- models.orig; val$missing <- TRUE
val$complete <- complidx-1
val$mnames <- mynames
attributes(val)$modelclass <- modelclass
attributes(val)$nmis <- nmis
return(val)
}
######################
### Usual analysis:
######################
warned <- FALSE
for (i in seq_len(nm)) {
if (inherits(datasets[[i]],c("data.frame","matrix"))) {
myvars <- intersect(colnames(datasets[[i]]),c(vars(models[[i]]),xfix[[i]],keep))
if (any(is.na(datasets[[i]][,myvars]))) {
if (!warned)
warning(paste0("Missing data encountered. Going for complete-case analysis"))
warned <- TRUE
datasets[[i]] <- na.omit(datasets[[i]][,myvars,drop=FALSE])
}
}
}
exo <- exogenous(models)
means <- lvms <- As <- Ps <- ps <- exs <- datas <- samplestat <- list()
for (i in seq_len(nm)) {
if (!is.null(exogenous(models[[i]]))) {
if (any(is.na(exogenous(models[[i]])))) {
exogenous(models[[i]]) <- exo
}
}
mydata <- datasets[[i]]
mymodel <- fixsome(models[[i]], data=mydata, measurement.fix=fix, exo.fix=exo.fix)
mymodel <- updatelvm(mymodel,zeroones=TRUE,deriv=TRUE)
P <- index(mymodel)$P1; P[P==0] <- NA
P[!is.na(P) & !is.na(mymodel$covpar)] <- mymodel$covpar[!is.na(P) & !is.na(mymodel$covpar)]
A <- index(mymodel)$M1; A[A==0] <- NA
A[!is.na(A) & !is.na(mymodel$par)] <- mymodel$par[!is.na(A) & !is.na(mymodel$par)]
mu <- unlist(mymodel$mean)[which(index(mymodel)$v1==1)]
#ex <- names(mymodel$expar)[which(index(mymodel)$e1==1)]
ex <- mymodel$exfix
if (length(ex)>0) {
if (any(is.na(ex))) ex[is.na(ex)] <- mymodel$expar[is.na(ex)]
ex <- ex[which(index(mymodel)$e1==1)]
}
p <- pars(mymodel, A, P, e=ex)
p[p=="1"] <- NA
means <- c(means, list(mu))
lvms <- c(lvms, list(mymodel))
datas <- c(datas, list(mydata))
samplestat <- c(samplestat, list(procdata.lvm(models[[i]],data=mydata)))
As <- c(As, list(A))
Ps <- c(Ps, list(P))
ps <- c(ps, list(p))
exs <- c(exs, list(ex))
};
######
pp <- unlist(ps)
parname <- unique(pp[!is.na(pp)])
pidx <- is.na(char2num(parname))
parname <- unique(unlist(pp[!is.na(pp)]));
nfree <- sum(is.na(pp)) + length(parname)
if (nfree>0) {
pp0 <- lapply(ps, is.na)
usedname <- cbind(parname, rep(NA,length(parname)))
counter <- 1
pres <- pres0 <- pp0
for (i in seq_len(length(pp0))) {
if (length(pp0[[i]]>0))
for (j in seq_len(length(pp0[[i]]))) {
pidx <- match(ps[[i]][j],parname)
if (pp0[[i]][j]) {
pres[[i]][j] <- paste0("p",counter)
pres0[[i]][j] <- counter
counter <- counter+1
} else if (!is.na(pidx)) {
if (!is.na(usedname[pidx,2])) {
pres[[i]][j] <- usedname[pidx,2]
pres0[[i]][j] <- char2num(substr(pres[[i]][j],2,nchar(pres[[i]][j])))
} else {
val <- paste0("p",counter)
pres[[i]][j] <- val
pres0[[i]][j] <- counter
usedname[pidx,2] <- val
counter <- counter+1
}
} else {
pres[[i]][j] <- NA
}
}
}
mypar <- paste0("p",seq_len(nfree))
myparPos <- pres0
myparpos <- pres
myparlist <- lapply(pres, function(x) x[!is.na(x)])
} else {
myparPos <- NULL
mypar <- NULL
myparpos <- NULL
myparlist <- NULL
}
### Mean parameter
mm <- unlist(means)
meanparname <- unique(mm[!is.na(mm)])
midx <- is.na(char2num(meanparname));
meanparname <- meanparname[midx]
any.mean <- sum(is.na(mm)) + length(meanparname)
nfree.mean <- sum(is.na(mm)) + length(setdiff(meanparname,parname))
## mean.fixed <- na.omit(match(parname,mm))
mean.omit <- lapply(means,function(x) na.omit(match(parname,x)))
if (any.mean>0) {
mm0 <- lapply(means, is.na)
usedname <- cbind(meanparname, rep(NA,length(meanparname)))
counter <- 1
res0 <- res <- mm0
for (i in seq_len(length(mm0))) {
if (length(mm0[[i]])>0)
for (j in seq_len(length(mm0[[i]]))) {
midx <- match(means[[i]][j],meanparname)
if (mm0[[i]][j]) {
res[[i]][j] <- paste0("m",counter)
res0[[i]][j] <- counter
counter <- counter+1
} else if (!is.na(midx)) {
pidx <- match(meanparname[midx],pp)
if (!is.na(pidx)) {
res[[i]][j] <- unlist(myparlist)[pidx]
res0[[i]][j] <- char2num(substr(res[[i]][j],2,nchar(res[[i]][j]))) +
nfree.mean
} else {
if (!is.na(usedname[midx,2])) {
res[[i]][j] <- usedname[midx,2]
res0[[i]][j] <- char2num(substr(res[[i]][j],2,nchar(res[[i]][j])))
} else {
val <- paste0("m",counter)
res[[i]][j] <- val
res0[[i]][j] <- counter
usedname[midx,2] <- val
counter <- counter+1
}
}
} else {
res[[i]][j] <- NA
}
}
}
mymeanPos <- res0
mymeanpos <- res
mymeanlist <- lapply(res, function(x) x[!is.na(x)])
mymean <- unique(unlist(mymeanlist))
} else {
mymeanPos <- NULL
mymean <- NULL
mymeanpos <- NULL
mymeanlist <- NULL
}
### Extra parameters
m0 <- p0 <- c()
coefs <- coefsm <- mm0 <- mm <- pp0 <- pp <- c()
for (i in seq_len(length(myparPos))) {
mi <- mymeanPos[[i]]
pi <- myparPos[[i]]
p1 <- setdiff(pi,p0)
p0 <- c(p0,p1)
## pp0 <- c(pp0,list(match(p1,pi)+nfree.mean))
pp0 <- c(pp0,list(match(p1,pi)))
if (length(mean.omit[[i]])>0) mi <- mi[-mean.omit[[i]]]
m1 <- setdiff(mi,m0)
m0 <- c(m0,m1)
mm0 <- c(mm0,list(match(m1,mi)))
pp <- c(pp,list(c(m1,p1+nfree.mean)))
if (length(p1)>0)
coefs <- c(coefs,paste(coef(lvms[[i]],fix=FALSE,mean=FALSE)[pp0[[i]]],i,sep="@"))
#coefs <- c(coefs,paste(i,coef(lvms[[i]],fix=FALSE,mean=FALSE)[pp0[[i]]],sep="@"))
if (length(m1)>0) {
coefsm0 <- paste(coef(lvms[[i]],fix=FALSE,mean=TRUE)[mm0[[i]]],i,sep="@")
#coefsm0 <- paste(i,coef(lvms[[i]],fix=FALSE,mean=TRUE)[mm0[[i]]],sep="@")
coefsm <- c(coefsm,coefsm0)
}
}
coefs <- c(coefsm,coefs)
res <- list(npar=nfree, npar.mean=nfree.mean,
ngroup=length(lvms), names=mynames,
lvm=lvms, data=datas, samplestat=samplestat,
A=As, P=Ps, expar=exs,
meanpar=names(mu), name=coefs, coef=pp, coef.idx=pp0,
par=mypar, parlist=myparlist, parpos=myparpos,
mean=mymean, meanlist=mymeanlist, meanpos=mymeanpos,
parposN=myparPos,
meanposN=mymeanPos,
models.orig=models.orig, missing=missing
)
class(res) <- "multigroup"
checkmultigroup(res)
return(res)
}
###}}}
###{{{ checkmultigroup
checkmultigroup <- function(x) {
## Check validity:
for (i in seq_len(x$ngroup)) {
if (nrow(x$data[[i]])<2) {
warning("With only one observation in the group, all parameters should be inherited from another a group!")
}
}
}
###}}} checkmultigroup
|