File: multinomial.R

package info (click to toggle)
r-cran-lava 1.8.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,816 kB
  • sloc: sh: 13; makefile: 2
file content (241 lines) | stat: -rw-r--r-- 7,449 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

##' Estimate probabilities in contingency table
##'
##' @title Estimate probabilities in contingency table
##' @aliases multinomial kappa.multinomial kappa.table gkgamma
##' @param x Formula (or matrix or data.frame with observations, 1 or 2 columns)
##' @param data Optional data.frame
##' @param marginal If TRUE the marginals are estimated
##' @param transform Optional transformation of parameters (e.g., logit)
##' @param vcov Calculate asymptotic variance (default TRUE)
##' @param IC Return ic decomposition (default TRUE)
##' @param ... Additional arguments to lower-level functions
##' @export
##' @examples
##' set.seed(1)
##' breaks <- c(-Inf,-1,0,Inf)
##' m <- lvm(); covariance(m,pairwise=TRUE) <- ~y1+y2+y3+y4
##' d <- transform(sim(m,5e2),
##'               z1=cut(y1,breaks=breaks),
##'               z2=cut(y2,breaks=breaks),
##'               z3=cut(y3,breaks=breaks),
##'               z4=cut(y4,breaks=breaks))
##' 
##' multinomial(d[,5])
##' (a1 <- multinomial(d[,5:6]))
##' (K1 <- kappa(a1)) ## Cohen's kappa
##' 
##' K2 <- kappa(d[,7:8])
##' ## Testing difference K1-K2:
##' estimate(merge(K1,K2,id=TRUE),diff)
##' 
##' estimate(merge(K1,K2,id=FALSE),diff) ## Wrong std.err ignoring dependence
##' sqrt(vcov(K1)+vcov(K2))
##' 
##' ## Average of the two kappas:
##' estimate(merge(K1,K2,id=TRUE),function(x) mean(x))
##' estimate(merge(K1,K2,id=FALSE),function(x) mean(x)) ## Independence
##' ##'
##' ## Goodman-Kruskal's gamma
##' m2 <- lvm(); covariance(m2) <- y1~y2
##' breaks1 <- c(-Inf,-1,0,Inf)
##' breaks2 <- c(-Inf,0,Inf)
##' d2 <- transform(sim(m2,5e2),
##'               z1=cut(y1,breaks=breaks1),
##'               z2=cut(y2,breaks=breaks2))
##' 
##' (g1 <- gkgamma(d2[,3:4]))
##' ## same as
##' \dontrun{
##' gkgamma(table(d2[,3:4]))
##' gkgamma(multinomial(d2[,3:4]))
##' }
##' 
##' ##partial gamma
##' d2$x <- rbinom(nrow(d2),2,0.5)
##' gkgamma(z1~z2|x,data=d2)
##' @author Klaus K. Holst
multinomial <- function(x,data=parent.frame(),marginal=FALSE,transform,vcov=TRUE,IC=TRUE,...) {
    formula <- NULL
    if (inherits(x,"formula")) {
        trm <- terms(x)
        if (length(attr(trm,"term.labels"))>1) {
            x <- update(x,as.formula(paste0(".~ interaction(",
                                           paste0(attr(trm,"term.labels"),collapse=","),")")))
            trm <- terms(x)
            
        }
        formula <- x
        x <- as.matrix(model.frame(trm,data))
        if (ncol(x)>1)
            x <- x[,c(seq(ncol(x)-1)+1,1),drop=FALSE]
    } else {
        trm <- NULL
    }
    if (!vcov) IC <- FALSE
    if (is.table(x) && IC) x <- lava::Expand(x)
    if (NCOL(x)==1) {
        if (!is.table(x)) {
            x <- as.factor(x)
            lev <- levels(x)
            k <- length(lev)
            n <- length(x)
            P <- table(x)/n
        } else {
            n <- sum(x)
            P <- x/n
            lev <- names(x)
            k <- length(lev)
        }
        if (IC) {
            IC <- matrix(0,n,k)
            for (i in seq(k)) {
                IC[,i] <- (1*(x==lev[i])-P[i])/n
            };
            varcov <- crossprod(IC)
        } else {
            IC <- varcov <- NULL
            if (vcov) {
                varcov <- tcrossprod(cbind(P))/n
                diag(varcov) <- P*(1-P)/n
            }
        }
        coefs <- as.vector(P); names(coefs) <- paste0("p",seq(k))
        res <- list(call=match.call(), coef=coefs,P=P,
                    vcov=varcov,IC=IC*NROW(IC),
                    position=seq(k),levels=list(lev),data=x, terms=trm)
        class(res) <- "multinomial"
        return(res)
    }

    if (!is.table(x)) {
        if (NCOL(x)!=2L) stop("Matrix or data.frame with one or two columns expected")
        x <- as.data.frame(x)
        x[,1] <- as.factor(x[,1])
        x[,2] <- as.factor(x[,2])
        lev1 <- levels(x[,1])
        lev2 <- levels(x[,2])
        k1 <- length(lev1)
        k2 <- length(lev2)
        M <- table(x)
        n <- sum(M)
    } else {
        lev1 <- rownames(x)
        lev2 <- colnames(x)
        k1 <- length(lev1)
        k2 <- length(lev2)
        M <- x
        n <- sum(x)
    }
    Pos <- P <- M/n
    if (IC) {
        IC <- matrix(0,n,k1*k2)
        for (j in seq(k2)) {
            for (i in seq(k1)) {
                pos <- (j-1)*k1+i
                IC[,pos] <- (x[,1]==lev1[i])*(x[,2]==lev2[j])-P[i,j]
                Pos[i,j] <- pos
            }
        }; IC <- IC/n
    } else {
        IC <- varcov <- NULL
    }
    
    coefs <- as.vector(P);
    names(coefs) <-  as.vector(outer(seq(k1),seq(k2),function(...) paste0("p",...)))
    position1 <- position2 <- NULL
    if (marginal) {
        p1 <- rowSums(P)
        p2 <- colSums(P)
        names(p1) <- paste0("p",seq(k1),".")
        names(p2) <- paste0("p",".",seq(k2))
        coefs <- c(coefs,p1,p2)
        position1 <- length(P)+seq(k1)
        position2 <- length(P)+k1+seq(k2)
        if (!is.null(IC)) {
            ic1 <- apply(Pos,1,function(x) rowSums(IC[,x]))
            ic2 <- apply(Pos,2,function(x) rowSums(IC[,x]))
            IC <- cbind(IC,ic1,ic2)
            colnames(IC) <- names(coefs)
        }
    }
    if (!missing(transform) && !is.null(IC)) {
        f <- function(p) do.call(transform,list(p))
        D <- diag(numDeriv::grad(f,coefs),ncol=length(coefs))
        coefs <- f(coefs)
        IC <- IC%*%t(D)
    }
    if (vcov && !is.null(IC)) varcov <- crossprod(IC)
    res <- list(call=match.call(),
               formula=formula,
               coef=coefs,P=P,vcov=varcov,IC=IC*NROW(IC), position=Pos,
               call=match.call(), levels=list(lev1,lev2), data=x,
               position1=position1,position2=position2, ## Position of marginals)
               terms=trm
                )
    class(res) <- "multinomial"
    if (length(list(...))>0) {
        res <- structure(estimate(res,...),class=c("multinomial","estimate"))
    }
    return(res)
}

##' @export
model.frame.multinomial <- function(formula,...) {
    formula$data
}

##' @export
IC.multinomial <- function(x,...) {
    x$IC
}

##' @export
coef.multinomial <- function(object,...) {
    object$coef
}

##' @export
vcov.multinomial <- function(object,...) {
    object$vcov
}

##' @export
predict.multinomial <- function(object,newdata,type=c("prob","map"),...) {    
    if (missing(newdata) || is.null(newdata)) newdata <- object$data
    if (!is.null(object$formula) && is.data.frame(newdata)) {
        trm <- terms(object$formula)
        newdata <- model.frame(trm,newdata)[,-1]
    }
    px <- rowSums(object$P)
    idx <- match(trim(as.character(newdata)),trim(rownames(object$P)))
    pcond <- object$P
    for (i in seq(nrow(pcond))) pcond[i,] <- pcond[i,]/px[i]
    pr <- pcond[idx,,drop=FALSE]
    if (tolower(type[1])%in%c("map","class")) {
        pr <- colnames(pr)[apply(pr,1,which.max)]
    }
    return(pr)
}

##' @export
print.multinomial <- function(x, ...) {
    cat("Call: "); print(x$call)
    cat("\nJoint probabilities:\n")
    print(x$P, quote=FALSE)
    if (length(dim(x$P))>1) {
        cat("\nConditional probabilities:\n")
        print(predict(x, newdata=rownames(x$P)), quote=FALSE)
    }
    cat("\n")
    print(estimate(NULL, coef=coef(x), vcov=vcov(x)))
    ## stderr <- diag(vcov(x))^.5
    ## StdErr <- x$position
    ## StdErr[] <- stderr[StdErr]
    ## cat("\nStd.Err:\n")
    ## print(StdErr,quote=FALSE)
    ## cat("\nPosition:\n")
    ## print(x$position,quote=FALSE)
}