1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
##' @export
"nonlinear<-" <- function(object,...,value) UseMethod("nonlinear<-")
##' @export
"nonlinear" <- function(object,...) UseMethod("nonlinear")
naturalcubicspline <- function(x, knots=stats::median(x,na.rm=TRUE), boundary=range(x,na.rm=TRUE)) {
## C2 functions, piecewise cubic
breaks <- c(boundary[1],knots,boundary[2])
K <- length(breaks)
g <- function(x,tau) (x-tau)^3*((x-tau)>0)
gg <- matrix(0,nrow=length(x),ncol=K)
for (i in seq(K)) {
gg[,i] <- g(x,breaks[i])
}
B <- matrix(0,nrow=length(x),ncol=K-2)
for (i in seq(K-2)) {
B[,i] <- gg[,i] -
(breaks[K]-breaks[i])/(breaks[K]-breaks[K-1])*gg[,K-1] +
(breaks[K-1]-breaks[i])/(breaks[K]-breaks[K-1])*gg[,K]
}
cbind(x,B)
}
ncspred <- function(mu, var, knots=c(-5,0,5)) {
breaks <- knots
K <- length(breaks)
v <- as.vector(var)
k <- sqrt(v/(2*pi))
g <- function(x,tau) {
x0 <- (x-tau)
x2 <- x0^2
p0 <- 1-pnorm(-x0/sqrt(v)) # P(x>tau|...)
k*(2*v + x2)*exp(-(x0/(sqrt(2*v)))^2) +
x0*(x2+3*v)*p0
}
n <- NROW(mu)
gg <- matrix(0,nrow=n,ncol=K)
for (i in seq(K)) {
gg[,i] <- g(mu,breaks[i])
}
B <- matrix(0,nrow=n,ncol=K-2)
for (i in seq(K-2)) {
B[,i] <- gg[,i] -
(breaks[K]-breaks[i])/(breaks[K]-breaks[K-1])*gg[,K-1] +
(breaks[K-1]-breaks[i])/(breaks[K]-breaks[K-1])*gg[,K]
}
cbind(mu,B)
}
##' @export
nonlinear.lvm <- function(object, to, from=NULL, type=c("quadratic"), knots=c(-5,0,5), names, ...) {
if (missing(to)) {
return(object$attributes$nonlinear)
}
if (inherits(to,"formula")) {
yy <- decomp.specials(getoutcome(to))
myvars <- all.vars(to)
from <- setdiff(myvars,yy)
to <- yy
}
if (length(to)>1) stop("Supply only one response variable")
if (length(from)>1) stop("Supply only one explanatory variable")
object <- cancel(object, c(from,to))
variance(object) <- to
f <- pred <- NULL
if (tolower(type)[1]%in%c("ncs","spline","naturalspline","cubicspline","natural cubic spline")) {
if (is.null(knots)) stop("Need cut-points ('knots')")
if (length(knots)<3) {
warning("Supply at least three knots (one interior and boundaries)")
## Fall-back to linear
type <- "linear"
}
if (missing(names)) names <- paste0(from,"_",seq(length(knots)-1))
f <- function(p,x) {
B <- cbind(1,naturalcubicspline(x,knots=knots[-c(1,length(knots))],boundary=knots[c(1,length(knots))]))
colnames(B) <- c("(Intercept)",names)
as.vector(B%*%p)
}
pred <- function(mu,var,...) {
B <- ncspred(mu,var,knots=knots)
structure(B,dimnames=list(NULL,names))
}
}
if (tolower(type)[1]=="linear") {
if (missing(names)) names <- from
f <- function(p,x) p[1] + p[2]*x
pred <- function(mu,var,...) {
structure(cbind(mu[,1]),dimnames=list(NULL,names))
}
}
if (tolower(type)[1]=="quadratic") {
if (missing(names)) names <- paste0(from,"_",1:2)
f <- function(p,x) p[1] + p[2]*x + p[3]*(x*x)
pred <- function(mu,var,...) {
structure(cbind(mu[,1],mu[,1]^2+var[1]),dimnames=list(NULL,names))
}
}
if (tolower(type)[1]%in%c("piecewise","piecewise linear","linear")) {
if (is.null(knots)) stop("Need cut-points ('knots')")
}
if (tolower(type)[1]%in%c("exp","exponential")) {
if (missing(names)) names <- paste0(from,"_",1:2)
f <- function(p,x) p[1] + p[2]*x + p[3]*exp(x)
pred <- function(mu,var,...) {
structure(cbind(mu[,1], exp(0.5*var[1] + mu[,1])),dimnames=list(NULL,names))
}
}
if (tolower(type)[1]%in%c("exp0")) {
if (missing(names)) names <- paste0(from,"_",1)
f <- function(p,x) p[1] + p[2]*exp(x)
pred <- function(mu,var,...) {
structure(cbind(exp(0.5*var[1] + mu[,1])),dimnames=list(NULL,names))
}
}
object$attributes$nonlinear[[to]] <- list(x=from, p=length(names)+1, newx=names, f=f, pred=pred, type=tolower(type[1]))
return(object)
}
##' @export
nonlinear.lvmfit <- function(object, to, ...) {
if (missing(to)) {
return(Model(object)$attributes$nonlinear)
}
Model(object) <- nonlinear(Model(object),to=to,...)
return(object)
}
##' @export
nonlinear.twostage.lvm <- function(object, ...) {
return(object$nonlinear)
}
##' @export
nonlinear.lvmfit <- function(object, ...) {
return(object$nonlinear)
}
##' @export
`nonlinear<-.lvm` <- function(object, ..., type="quadratic", value) {
nonlinear(object,to=value,type=type,...)
}
|