1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
###{{{ print.lvm
##' @export
`print.lvm` <-
function(x, ..., print.transform=TRUE,print.exogenous=TRUE) {
res <- NULL
myhooks <- gethook("print.hooks")
for (f in myhooks) {
res <- do.call(f, list(x=x, ...))
}
if (is.null(res)) {
k <- length(vars(x))
L <- rep(FALSE, k); names(L) <- vars(x); L[latent(x)] <- TRUE
cat("Latent Variable Model\n") ##;" \n\twith: ", k, " variables.\n", sep="");
if (k==0) {
cat("\nEmpty\n")
return()
}
ff <- formula(x, char=TRUE, all=TRUE)
R <- Rx <- Rt <- c()
exo <- exogenous(x)
for (f in ff) {
oneline <- as.character(f);
y <- strsplit(f, "~")[[1]][1]
y <- trim(y)
{
col1 <- as.character(oneline)
D <- attributes(distribution(x)[[y]])$family
Tr <- x$attributes$transform[[y]]
col2 <- tryCatch(x$attributes$type[[y]], error=function(...) NULL)
if (is.null(col2) || is.na(col2)) {
if (!is.na(x$covfix[y, y]) && x$covfix[y, y]==0L) {
col2 <- "deterministic"
} else {
col2 <- "gaussian"
}
}
if (!is.null(Tr)){
col1 <- paste0(y, " ~ ", paste0(Tr$x, collapse="+"), sep="")
Rt <- rbind(Rt, c(col1, ""))
}
if (!is.null(D$family)) {
col2 <- paste0(D$family)
}
if (!is.null(D$link)) col2 <- paste0(col2, "(", D$link, ")")
if (!is.null(D$par)) col2 <- paste0(col2, "(", paste(D$par, collapse=","), ")")
if (is.list(distribution(x)[[y]]) && is.vector(distribution(x)[[y]][[1]])) col2 <- "fixed"
if (L[y]) col2 <- paste0(col2, ", latent")
if (y%in%exo) {
Rx <- rbind(Rx,c(col1, col2))
} else {
if (is.null(Tr)) {
R <- rbind(R,c(col1, col2))
}
}
}
}
if (length(R)>0) {
rownames(R) <- paste(" ", R[, 1], " "); colnames(R) <- rep("", ncol(R))
print(R[, 2, drop=FALSE], quote=FALSE, ...)
}
if (print.exogenous && length(Rx)>0) {
cat("\nExogenous variables:")
rownames(Rx) <- paste(" ", gsub("~ 1", "", Rx[, 1]), " "); colnames(Rx) <- rep("", ncol(Rx))
print(Rx[, 2, drop=FALSE], quote=FALSE, ...)
}
if (print.transform && length(Rt)>0) {
cat("\nTransformations:")
rownames(Rt) <- paste(" ", gsub("~ 1", "", Rt[,1]), " "); colnames(Rt) <- rep("", ncol(Rt))
print(Rt[,2,drop=FALSE],quote=FALSE, ...)
}
}
cat("\n")
invisible(x)
}
###}}} print.lvm
###{{{ print.lvmfit
##' @export
`print.lvmfit` <-
function(x,type=2,labels=FALSE,...) {
print(CoefMat(x,labels=labels,type=type,...),quote=FALSE,right=TRUE)
minSV <- attr(vcov(x),"minSV")
if (!is.null(minSV) && minSV<1e-12) {
warning("Small singular value: ", format(minSV))
}
pseudo <- attr(vcov(x),"pseudo")
if (!is.null(pseudo) && pseudo) warning("Singular covariance matrix. Pseudo-inverse used.")
invisible(x)
}
###}}} print.lvmfit
###{{{ print.lvmfit.randomslope
##' @export
print.lvmfit.randomslope <- function(x,labels=FALSE,type=2,...) {
print(CoefMat(x,labels=labels,type=type,...),quote=FALSE,right=TRUE)
invisible(x)
}
###}}}
###{{{ print.multigroupfit
##' @export
print.multigroupfit <- function(x,groups=NULL,...) {
if (is.null(groups)) {
if (x$model$missing) {
modelclass <- attributes(x$model0)$modelclass
nmis <- attributes(x$model0)$nmis
orggroup <- unique(modelclass)
groupn <- unlist(lapply(orggroup,function(i) sum(modelclass==i)))
cumsumgroup <- cumsum(c(0,groupn))
groups <- unlist(lapply(orggroup,function(i)
which.min(nmis[which(modelclass==i)])+cumsumgroup[i])) ## groups with max. number of variables
for (i in seq_len(length(groups))) {
if (nmis[groups[i]]>0) warning("No complete cases in group ",i,". Showing results of group with max number of variables. All coefficients can be extracted with 'coef'. All missing pattern groups belonging to this sub-model can be extracted by calling: coef(..., groups=c(",paste(which(modelclass==i),collapse=","),"))")
}
if (!is.null(x$model$mnameses))
x$model$names <- x$model$mnames
} else {
groups <- seq_len(length(x$model$lvm))
}
}
res <- coef(x,type=2,groups=groups,...)
counter <- 0
dots <- list(...)
dots$groups <- groups
type <- if (is.null(dots$type)) {
dots$type <- 2
## dots$type <- ifelse("lvmfit.randomslope"%in%class(x),2,9)
}
myargs <- c(list(x=x), dots)
myargs$groups <- groups
CC <- do.call("CoefMat.multigroupfit",myargs)
for (cc in res) {
counter <- counter+1
cat(rep("_",52),"\n",sep="")
cat("Group ", counter, sep="")
myname <- x$model$names[counter]
if (!is.null(myname) && !is.na(myname))
cat(": ",myname,sep="")
if (!x$model$missing) cat(" (n=",nrow(Model(x)$data[[groups[counter]]]), ")", sep="")
cat("\n")
print(CC[[counter]],quote=FALSE,right=TRUE)
}
cat("\n")
invisible(x)
}
###}}} print.multigroupfit
###{{{ print.multigroup
##' @export
print.multigroup <- function(x,...) {
cat("\n")
cat("Number of groups:", x$ngroup, "\n")
cat("Number of free parameters (not counting mean-parameters):", x$npar,"\n")
## cat("Parameter-vector:", unlist(x$parlist), "\n\n")
cat("Number of free mean parameters:", length(grep("m",x$mean)),"\n")
## cat("Mean-vector:", x$mean, "\n\n")
invisible(x)
}
###}}} print.multigroup
###{{{ printmany
printmany <- function(A,B,nspace=1,name1=NULL,name2=NULL,digits=3,rownames=NULL,emptystr=" ",bothrows=!is.table(A),right=TRUE,print=TRUE,...) {
A <- format(A, digits=digits, right=right, ...)
B <- format(B, digits=digits, right=right, ...)
nA <- nrow(A); nB <- nrow(B)
if (nrow(A)<nrow(B)) {
A <- rbind(A, matrix("", nrow=nB-nA, ncol=ncol(A)))
}
if (nrow(B)<nrow(A)) {
B <- rbind(B, rep("", nrow=nA-nB, ncol=ncol(B)))
}
if (!is.null(rownames) & length(rownames)==nrow(A))
rownames(A) <- rownames(B) <- rownames
res <- cbind(A, matrix("", nrow=nrow(A), ncol=nspace));
dnn <- dimnames(A)
dnn[[2]] <- c(dnn[[2]],rep(emptystr,nspace))
dimnames(res) <- dnn
##dimnames(res)[[2]] <- c(dimnames(res)[[2]],rep(emptystr,nspace))
if (!is.null(name1)) {
oldname <- colnames(res)
res <- cbind(rep("",nrow(res)), rownames(res), res);
cres <- name1
if (!is.null(rownames(res))) cres <- c(cres,"")
colnames(res) <- c(cres,oldname)
rownames(res) <- rep("",nrow(res))
}
if (!is.null(name2)) {
oldname <- colnames(res)
res <- cbind(res,rep("",nrow(res))); colnames(res) <- c(oldname,name2)
}
if (!identical(rownames(A),rownames(B)) & bothrows)
res <- cbind(res, rownames(B))
res <- cbind(res, B)
if (is.null(name2)) {
dnn[[2]] <- c(dnn[[2]],dimnames(B)[[2]])
dimnames(res) <- dnn
}
if (print) print(res, quote=FALSE, right=right, ...)
invisible(res)
}
###}}} printmany
|