1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
##' Add regression association to latent variable model
##'
##' Define regression association between variables in a \code{lvm}-object and
##' define linear constraints between model equations.
##'
##'
##' The \code{regression} function is used to specify linear associations
##' between variables of a latent variable model, and offers formula syntax
##' resembling the model specification of e.g. \code{lm}.
##'
##' For instance, to add the following linear regression model, to the
##' \code{lvm}-object, \code{m}:
##' \deqn{ E(Y|X_1,X_2) = \beta_1 X_1 + \beta_2 X_2}
##' We can write
##'
##' \code{regression(m) <- y ~ x1 + x2}
##'
##' Multivariate models can be specified by successive calls with
##' \code{regression}, but multivariate formulas are also supported, e.g.
##'
##' \code{regression(m) <- c(y1,y2) ~ x1 + x2}
##'
##' defines
##' \deqn{ E(Y_i|X_1,X_2) = \beta_{1i} X_1 + \beta_{2i} X_2 }
##'
##' The special function, \code{f}, can be used in the model specification to
##' specify linear constraints. E.g. to fix \eqn{\beta_1=\beta_2}
##' , we could write
##'
##' \code{regression(m) <- y ~ f(x1,beta) + f(x2,beta)}
##'
##' The second argument of \code{f} can also be a number (e.g. defining an
##' offset) or be set to \code{NA} in order to clear any previously defined
##' linear constraints.
##'
##' Alternatively, a more straight forward notation can be used:
##'
##' \code{regression(m) <- y ~ beta*x1 + beta*x2}
##'
##' All the parameter values of the linear constraints can be given as the right
##' handside expression of the assigment function \code{regression<-} (or
##' \code{regfix<-}) if the first (and possibly second) argument is defined as
##' well. E.g:
##'
##' \code{regression(m,y1~x1+x2) <- list("a1","b1")}
##'
##' defines \eqn{E(Y_1|X_1,X_2) = a1 X_1 + b1 X_2}. The rhs argument can be a
##' mixture of character and numeric values (and NA's to remove constraints).
##'
##' The function \code{regression} (called without additional arguments) can be
##' used to inspect the linear constraints of a \code{lvm}-object.
##'
##' @aliases regression regression<- regression<-.lvm regression.lvm regfix
##' regfix regfix<- regfix.lvm regfix<-.lvm
##' @param object \code{lvm}-object.
##' @param value A formula specifying the linear constraints or if
##' \code{to=NULL} a \code{list} of parameter values.
##' @param to Character vector of outcome(s) or formula object.
##' @param from Character vector of predictor(s).
##' @param fn Real function defining the functional form of predictors (for
##' simulation only).
##' @param messages Controls which messages are turned on/off (0: all off)
##' @param additive If FALSE and predictor is categorical a non-additive effect is assumed
##' @param y Alias for 'to'
##' @param x Alias for 'from'
##' @param quick Faster implementation without parameter constraints
##' @param \dots Additional arguments to be passed to the low level functions
##' @usage
##' \method{regression}{lvm}(object = lvm(), to, from, fn = NA,
##' messages = lava.options()$messages, additive=TRUE, y, x, value, ...)
##' \method{regression}{lvm}(object, to=NULL, quick=FALSE, ...) <- value
##' @return A \code{lvm}-object
##' @note Variables will be added to the model if not already present.
##' @author Klaus K. Holst
##' @seealso \code{\link{intercept<-}}, \code{\link{covariance<-}},
##' \code{\link{constrain<-}}, \code{\link{parameter<-}},
##' \code{\link{latent<-}}, \code{\link{cancel<-}}, \code{\link{kill<-}}
##' @keywords models regression
##' @examples
##'
##' m <- lvm() ## Initialize empty lvm-object
##' ### E(y1|z,v) = beta1*z + beta2*v
##' regression(m) <- y1 ~ z + v
##' ### E(y2|x,z,v) = beta*x + beta*z + 2*v + beta3*u
##' regression(m) <- y2 ~ f(x,beta) + f(z,beta) + f(v,2) + u
##' ### Clear restriction on association between y and
##' ### fix slope coefficient of u to beta
##' regression(m, y2 ~ v+u) <- list(NA,"beta")
##'
##' regression(m) ## Examine current linear parameter constraints
##'
##' ## ## A multivariate model, E(yi|x1,x2) = beta[1i]*x1 + beta[2i]*x2:
##' m2 <- lvm(c(y1,y2) ~ x1+x2)
##'
##' @export
"regression<-" <- function(object,...,value) UseMethod("regression<-")
##' @export
regression.formula <- function(object,...) regression(lvm(),object,...)
##' @export
"regression<-.lvm" <- function(object, to=NULL, quick=FALSE, ..., value) {
dots <- list(...)
if (length(dots$additive)>0 && !dots$additive && !inherits(value,"formula")) {
regression(object,beta=value,...) <- to
return(object)
}
if (!is.null(to) || !is.null(dots$y)) {
regfix(object, to=to, ...) <- value
return(object)
} else {
if (is.list(value)) {
for (v in value) {
regression(object,...) <- v
}
return(object)
}
if (inherits(value,"formula")) {
fff <- procformula(object,value,...)
object <- fff$object
lhs <- fff$lhs
xs <- fff$xs
ys <- fff$ys
res <- fff$res
X <- fff$X
if (fff$iscovar) {
## return(covariance(object,var1=decomp.specials(lhs[[1]]),var2=X))
covariance(object) <- toformula(decomp.specials(lhs[[1]]),X)
return(object)
}
if (!is.null(lhs) && nchar(lhs[[1]])>2 && substr(lhs[[1]],1,2)=="v(") {
v <- update(value,paste(decomp.specials(lhs),"~."))
covariance(object,...) <- v
return(object)
}
if (length(lhs)==0) {
index(object) <- reindex(object)
return(object)
}
for (i in seq_len(length(ys))) {
y <- ys[i]
for (j in seq_len(length(xs))) {
if (length(res[[j]])>1) {
regfix(object, to=y[1], from=xs[j],...) <- res[[j]][2]
} else {
object <- regression(object,to=y[1],from=xs[j],...)
}
}
}
object$parpos <- NULL
return(object)
}
if (!is.list(value) | length(value)>2) stop("Value should contain names of outcome (to) and predictors (from)")
if (all(c("to","from")%in%names(value))) {
xval <- value$x; yval <- value$y
} else {
yval <- value[[1]]; xval <- value[[2]]
}
regression(object, to=yval, from=xval,...)
}
}
##' @export
`regression` <-
function(object,to,from,...) UseMethod("regression")
##' @export
`regression.lvm` <-
function(object=lvm(),to,from,fn=NA,messages=lava.options()$messages,
additive=TRUE, y,x,value,...) {
if (!missing(y)) {
if (inherits(y,"formula")) y <- all.vars(y)
to <- y
}
if (!missing(x)) {
if (inherits(x,"formula")) x <- all.vars(x)
from <- x
}
if (!additive) {
if (!inherits(to,"formula")) to <- toformula(to,from)
x <- attributes(getoutcome(to))$x
K <- object$attributes$nordinal[x]
if (is.null(K) || is.na(K)) {
K <- list(...)$K
if (is.null(K)) stop("Supply number of categories, K (or use method 'categorical' before calling 'regression').")
object <- categorical(object,x,...)
}
dots <- list(...);
dots$K <- K
dots$x <- object
dots$formula <- to
dots$regr.only <- TRUE
object <- do.call("categorical",dots)
return(object)
}
if (missing(to)) {
return(regfix(object))
}
if ((missing(from) || is.null(from)) &
is.character(to)) {
to <- as.formula(paste(to, "~1"))
}
if (inherits(to,"formula")) {
if (!missing(value)) {
regression(object,to,messages=messages,...) <- value
} else {
regression(object,messages=messages,...) <- to
}
object$parpos <- NULL
return(object)
}
if (is.list(to)) {
for (t in to)
regression(object,messages=messages,...) <- t
object$parpos <- NULL
return(object)
}
sx <- strsplit(from,"@")
xx <- sapply(sx, FUN=function(i) i[1])
ps <- sapply(sx, FUN=function(i) i[2])
sx <- strsplit(xx,"$",fixed=TRUE)
xs <- sapply(sx, FUN=function(i) i[1])
fix <- char2num(sapply(sx, FUN=function(i) i[2]))
allv <- index(object)$vars
object <- addvar(object, c(to,xs), messages=messages, reindex=FALSE)
for (i in to)
for (j in xs) {
object$M[j,i] <- 1
if (!is.na(fn))
functional(object,j,i) <- fn
}
if (lava.options()$exogenous) {
newexo <- setdiff(xs,c(to,allv))
exo <- exogenous(object)
if (length(newexo)>0)
exo <- unique(c(exo,newexo))
exogenous(object) <- setdiff(exo,to)
}
if (lava.options()$debug) {
print(object$fix)
}
object$fix[xs,to] <- fix
object$par[xs,to] <- ps
object$parpos <- NULL
index(object) <- reindex(object)
return(object)
}
|