File: zib.R

package info (click to toggle)
r-cran-lava 1.8.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,816 kB
  • sloc: sh: 13; makefile: 2
file content (393 lines) | stat: -rw-r--r-- 14,608 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
##' Dose response calculation for binomial regression models
##'
##' @title Dose response calculation for binomial regression models
##' @param model Model object or vector of parameter estimates
##' @param intercept Index of intercept parameters
##' @param slope Index of intercept parameters
##' @param prob Index of mixture parameters (only relevant for
##' \code{zibreg} models)
##' @param x Optional weights
##' length(x)=length(intercept)+length(slope)+length(prob)
##' @param level Probability at which level to calculate dose
##' @param ci.level Level of confidence limits
##' @param vcov Optional estimate of variance matrix of parameter
##' estimates
##' @param family Optional distributional family argument
##' @param EB Optional ratio of treatment effect and adverse effects
##' used to find optimal dose (regret-function argument)
##' @author Klaus K. Holst
##' @export
PD <- function(model,intercept=1,slope=2,prob=NULL,x,level=0.5,
        ci.level=0.95,vcov,family, EB=NULL) {
    if (is.vector(model)) {
        beta <- model
        if (missing(vcov)) stop("vcov argument needed")
        if (missing(family)) stop("family argument needed")
    } else beta <- coef(model)
    if (missing(vcov)) vcov <- stats::vcov(model)
    if (missing(family)) family <- stats::family(model)
    N <- length(intercept)+length(slope)+length(prob)
    if (length(intercept)<length(beta)) {
        B.intercept <- rep(0,length(beta));
        if (!missing(x)) {
            if (length(x)!=N) stop("x should be of same length as the total length of 'intercept','slope','prob'")
            B.intercept[intercept] <- x[seq_len(length(intercept))]
        } else B.intercept[intercept] <- 1
    } else {
        B.intercept <- intercept
    }
    if (length(slope)<length(beta)) {
        B.slope <- rep(0,length(beta));
        if (!missing(x))
            B.slope[slope] <- x[length(intercept)+seq_len(length(slope))]
        else
            B.slope[slope] <- 1
    } else {
        B.slope <- slope
    }
    if (!is.null(prob)) {
        if (length(prob)<length(beta)) {
            B.prob <- rep(0,length(beta));
            if (!missing(x))
                B.prob[prob] <- x[length(intercept)+length(slope)+seq_len(length(prob))]
            else
                B.prob[prob] <- 1
        } else {
            B.prob <- prob
        }
    }
    if (is.null(prob)) B.prob <- NULL
    B <- rbind(B.intercept,B.slope,B.prob)
    S <- B%*%vcov%*%t(B)
    b <- as.vector(B%*%beta)

    f <- function(b) {
        mylevel <- level
        if (!is.null(EB)) {
            if (is.null(prob)) stop("Index of mixture-probability parameters needed")
            pi0 <- family$linkinv(b[3])
            mylevel <- 1-(1-pi0)/pi0*(EB)/(1-EB)
        }
        return(structure((family$linkfun(mylevel)-b[1])/b[2],level=mylevel))
    }

    xx <- f(b)
    Dxx <- -1/b[2]*rbind(1,xx)
    if (!is.null(EB))
        Dxx <- numDeriv::grad(f,b)
    se <- diag(t(Dxx)%*%S%*%Dxx)^0.5
    res <- cbind(Estimate=xx,"Std.Err"=se)
    alpha <- 1-ci.level
    alpha.str <- paste(c(alpha/2,1-alpha/2)*100,"",sep="%")
    res <- cbind(res,res[,1]-qnorm(1-alpha/2)*res[,2],res[,1]+qnorm(1-alpha/2)*res[,2])
    colnames(res)[3:4] <- alpha.str
    rownames(res) <- paste0(round(1000*attributes(xx)$level)/10,"%")
    structure(res,b=b)
}


TN.zibreg <- function(object,data=model.frame(object),p=coef(object),intercept=1,slope=2,alpha=0.95,...) {
    pp <- predict(object,link=FALSE,p=p,newdata=data)
    X <- attributes(pp)$grad$beta
    Z <- attributes(pp)$grad$gamma
    db1 <- db2 <- matrix(0,nrow(X),ncol(X))
    db1[,intercept] <- X[,intercept]
    db2[,slope[1]] <- 1; db2[,slope[-1]] <- X[,slope[-1]]
    b1 <- as.vector(db1%*%p[object$beta.idx])
    b2 <- as.vector(db2%*%p[object$beta.idx])
    ginv <-  object$family$linkinv
    dginv <- object$family$mu.eta ## D[linkinv]
    g <- object$family$linkfun
    dg <- function(x) 1/dginv(g(x)) ## Dh^-1 = 1/(h'(h^-1(x)))
    pi0 <- ginv(pp[,2])
    A2 <- dginv(pp[,2])
    dpi0 <- rbind(apply(Z,2,function(z) A2*z))
    h <- function(pi0) (alpha+pi0-1)/(alpha*pi0)
    dh <- function(pi0) (1-alpha)/(alpha*pi0^2)
    lev <- h(pi0)
    eta <- g(lev)
    detad2 <- rbind(apply(dpi0,2,function(z) dg(lev)*dh(pi0)*z))
    val <- (eta-b1)/b2
    dvald1 <- -(db1+db2*val)/b2
    return(structure(val,grad=cbind(dvald1,detad2/b2),varnames="theta"))
    ##  structure(g(coef(object)),grad=grad(g,coef(object)))
}



##' Regression model for binomial data with unkown group of immortals (zero-inflated binomial regression)
##'
##' @title Regression model for binomial data with unkown group of immortals
##' @param formula Formula specifying
##' @param formula.p Formula for model of disease prevalence
##' @param data data frame
##' @param family Distribution family (see the help page \code{family})
##' @param offset Optional offset
##' @param start Optional starting values
##' @param var Type of variance (robust, expected, hessian, outer)
##' @param ... Additional arguments to lower level functions
##' @author Klaus K. Holst
##' @export
##' @examples
##'
##' ## Simulation
##' n <- 2e3
##' x <- runif(n,0,20)
##' age <- runif(n,10,30)
##' z0 <- rnorm(n,mean=-1+0.05*age)
##' z <- cut(z0,breaks=c(-Inf,-1,0,1,Inf))
##' p0 <- lava:::expit(model.matrix(~z+age) %*% c(-.4, -.4, 0.2, 2, -0.05))
##' y <- (runif(n)<lava:::tigol(-1+0.25*x-0*age))*1
##' u <- runif(n)<p0
##' y[u==0] <- 0
##' d <- data.frame(y=y,x=x,u=u*1,z=z,age=age)
##' head(d)
##'
##' ## Estimation
##' e0 <- zibreg(y~x*z,~1+z+age,data=d)
##' e <- zibreg(y~x,~1+z+age,data=d)
##' compare(e,e0)
##' e
##' PD(e0,intercept=c(1,3),slope=c(2,6))
##'
##' B <- rbind(c(1,0,0,0,20),
##'            c(1,1,0,0,20),
##'            c(1,0,1,0,20),
##'            c(1,0,0,1,20))
##' prev <- summary(e,pr.contrast=B)$prevalence
##'
##' x <- seq(0,100,length.out=100)
##' newdata <- expand.grid(x=x,age=20,z=levels(d$z))
##' fit <- predict(e,newdata=newdata)
##' plot(0,0,type="n",xlim=c(0,101),ylim=c(0,1),xlab="x",ylab="Probability(Event)")
##' count <- 0
##' for (i in levels(newdata$z)) {
##'   count <- count+1
##'   lines(x,fit[which(newdata$z==i)],col="darkblue",lty=count)
##' }
##' abline(h=prev[3:4,1],lty=3:4,col="gray")
##' abline(h=prev[3:4,2],lty=3:4,col="lightgray")
##' abline(h=prev[3:4,3],lty=3:4,col="lightgray")
##' legend("topleft",levels(d$z),col="darkblue",lty=seq_len(length(levels(d$z))))
zibreg <- function(formula,formula.p=~1,data,family=stats::binomial(),offset=NULL,start,var="hessian",...) {
    md <- cbind(model.frame(formula,data),model.frame(formula.p,data))
    y <- md[,1]
    X <- model.matrix(formula,data)
    Z <- model.matrix(formula.p,data)
    beta.idx <- seq(ncol(X)); gamma.idx <- seq(ncol(Z))+ncol(X)
    if (missing(start)) start <- rep(0,ncol(X)+ncol(Z))
    op <- nlminb(start,function(x)
        -zibreg_logL(x[beta.idx],x[gamma.idx],y,X,Z),
        gradient=function(x)
            -zibreg_score(x[beta.idx],x[gamma.idx],y,X,Z),...)
    beta <- op$par[beta.idx]; gamma <- op$par[gamma.idx]
    cc <- c(beta,gamma)
    names(cc) <- c(colnames(X),paste0("pr:",colnames(Z)))
    bread <- Inverse(zibreg_information(beta,gamma,y,X,Z,offset,type="hessian",...))
    if (tolower(var[1])%in%c("robust","sandwich")) {
        meat <- zibreg_information(beta,gamma,y,X,Z,offset,family,type="outer",...)
        V <- bread%*%meat%*%bread
    } else {
        V <- bread
    }
    n <- length(y)
    colnames(V) <- rownames(V) <- names(cc)
    res <- list(coef=cc,opt=op,beta=beta,gamma=gamma,
                beta.idx=beta.idx,gamma.idx=gamma.idx,bread=bread*n,
                formula=formula,formula.p=formula.p, y=y, X=X, Z=Z, offset=offset, vcov=V, model.frame=md,family=family)
    class(res) <- "zibreg"
    res$fitted.values <- predict(res)
    return(res)
}

##' @export
vcov.zibreg <- function(object,...) object$vcov

##' @export
coef.zibreg <- function(object,...) object$coef

##' @export
family.zibreg <- function(object,...) object$family

##' @export
predict.zibreg <- function(object,p=coef(object),gamma,newdata,link=TRUE,subdist=FALSE,...) {
    newf <- as.formula(paste("~",as.character(object$formula)[3]))
    if (missing(newdata)) {
        X <- object$X; Z <- object$Z
    } else {
        X <- model.matrix(newf,newdata)
        Z <- model.matrix(object$formula.p,newdata)
    }
    if (length(p)==length(object$beta)+length(object$gamma)) {
        gamma <- p[object$gamma.idx]
        p <- p[object$beta.idx]
    }
    ginv <- object$family$linkinv
    dginv <- object$family$mu.eta ## D[linkinv]
    Xbeta <- as.vector(X%*%p)
    Zgamma <- as.vector(Z%*%gamma)
    if (!link) {
        res <- cbind(beta=Xbeta,gamma=Zgamma)
        return(structure(res,grad=list(beta=X,gamma=Z)))
    }
    Pred <- ginv(Xbeta)
    p0 <- ginv(Zgamma)
    A1 <- dginv(Xbeta)
    A2 <- dginv(Zgamma)
    if (subdist) {
        dgamma <- apply(Z,2,function(z) A2*z)
        dbeta <- apply(X,2,function(x) A1*x)
        res <- cbind(subdist=Pred,pr=p0)
        return(structure(res,grad=list(subdist=dbeta,pr=dgamma)))
    }
    Pred <- p0*Pred
    A1 <- p0*A1
    A2 <- Pred*dginv(Zgamma)
    dgamma <- apply(Z,2,function(z) A2*z)
    dbeta <- apply(X,2,function(x) A1*x)
    attributes(Pred)$grad <- cbind(dbeta,p0*dgamma)
    return(Pred)
}

##' @export
residuals.zibreg <- function(object,newdata,...) {
    if (missing(newdata)) {
        y <- object$y
    } else {
        y <- model.frame(object$formula,newdata)[,1]
    }
    y-predict(object,newdata=newdata,...)
}

##' @export
summary.zibreg <- function(object,level=0.95,pr.contrast,...) {
    alpha <- 1-level
    alpha.str <- paste(c(alpha/2,1-alpha/2)*100,"",sep="%")
    cc <- cbind(coef(object),diag(vcov(object))^0.5)
    pval <- 2*(pnorm(abs(cc[,1]/cc[,2]),lower.tail=FALSE))
    qq <- qnorm(1-alpha/2)
    cc <- cbind(cc[,1],cc[,1]-qq*cc[,2],cc[,1]+qq*cc[,2],pval)
    colnames(cc) <- c("Estimate",alpha.str,"P-value")
    pr.names <- unlist(lapply(rownames(cc)[object$gamma.idx],
                              function(x) substr(x,4,nchar(x))))
    if (missing(pr.contrast)) {
        withIntercept <- pr.names[1]=="(Intercept)"
        pr.contrast <- diag(length(object$gamma.idx))
        if (withIntercept) pr.contrast[,1] <- 1
    }
    pr.cc <- cbind(pr.contrast%*%cc[object$gamma.idx,1],
                   diag((pr.contrast)%*%vcov(object)[object$gamma.idx,object$gamma.idx]%*%t(pr.contrast))^0.5)
    pr.cc <- object$family$linkinv(cbind(pr.cc[,1],pr.cc[,1]-qq*pr.cc[,2],pr.cc[,1]+qq*pr.cc[,2]))
    colnames(pr.cc) <- colnames(cc)[1:3]
    ## B <- cbind(0,cbind(0,pr.contrast))
    ## print(compare(object,contrast=B))
    pr.rnames <- c()
    for (i in seq_len(nrow(pr.contrast))) {
        Bidx <- which(pr.contrast[i,]!=0)
        Bval <- pr.contrast[i,Bidx]; Bval[Bval==1] <- ""
        pr.rnames <- c(pr.rnames,
                       paste0(paste0(Bval,paste0("{",pr.names[Bidx],"}"),collapse=" + ")))
    }
    rownames(pr.cc) <- pr.rnames

    return(structure(list(coef=cc, prevalence=pr.cc),class="summary.zibreg"))
}


##' @export
print.summary.zibreg <- function(x,...) {
    print(x$coef,...)
    cat("\nPrevalence probabilities:\n")
    print(x$prevalence,...)
}

##' @export
print.zibreg <- function(x,...) {
    print(summary(x,...))
}

##' @export
logLik.zibreg <- function(object,beta=object$beta,gamma=object$gamma,data,offset=object$offset,indiv=FALSE,...) {
    if (!missing(data)) {
        y <- model.frame(object$formula,data)[,1]
        X <- model.matrix(object$formula,data)
        Z <- model.matrix(object$formula.p,data)
        return(zibreg_logL(beta,gamma,y,X,Z,offset,object$family,indiv=indiv,...))
    }
    zibreg_logL(beta,gamma,object$y,object$X,object$Z,offset,object$family,indiv=indiv,...)
}
zibreg_logL <- function(beta,gamma,y,X,Z,offset=NULL,family=stats::binomial(),indiv=FALSE,...) {
    ginv <- family$linkinv
    n <- nrow(X)
    Xbeta <- as.vector(X%*%beta)
    Zgamma <- as.vector(Z%*%gamma)
    p0 <- ginv(Zgamma)
    if (!is.null(offset)) Xbeta <- Xbeta+offset
    Pr <- p0*ginv(Xbeta)
    loglik <- y*log(Pr)+(1-y)*log(1-Pr)
    if (indiv) return(loglik)
    loglik <- sum(loglik)
    structure(loglik,nobs=n,df=length(beta)+length(gamma),class="logLik")
}

##' @export
score.zibreg <- function(x,beta=x$beta,gamma=x$gamma,data,offset=x$offset,indiv=FALSE,...) {
    if (!missing(data)) {
        y <- model.frame(x$formula,data)[,1]
        X <- model.matrix(x$formula,data)
        Z <- model.matrix(x$formula.p,data)
        s <- zibreg_score(beta,gamma,y,X,Z,offset,x$family,indiv=indiv,...)
    } else {
        s <- zibreg_score(beta,gamma,x$y,x$X,x$Z,offset,x$family,indiv=indiv,...)
    }
    if (indiv) colnames(s) <- names(x$coef) else names(s) <- names(x$coef)
    return(s)
}

zibreg_score <- function(beta,gamma,y,X,Z,offset=NULL,family=stats::binomial(),indiv=FALSE,...) {
    ginv <- family$linkinv
    dginv <- family$mu.eta ## D[linkinv]
    Xbeta <- as.vector(X%*%beta)
    Zgamma <- as.vector(Z%*%gamma)
    p0 <- ginv(Zgamma)
    if (!is.null(offset)) Xbeta <- Xbeta+offset
    Pr <- p0*ginv(Xbeta)
    A0 <- (y/Pr  - (1-y)/(1-Pr))
    A1 <- A0*p0*dginv(Xbeta)
    A2 <- A0*ginv(Xbeta)*dginv(Zgamma)
    dbeta <- apply(X,2,function(x) A1*x)
    dgamma <- apply(Z,2,function(z) A2*z)
    ss <- cbind(dbeta,dgamma)
    if (indiv) return(ss)
    colSums(ss)
}

##' @export
information.zibreg <- function(x,beta=x$beta,gamma=x$gamma,data,offset=x$offset,type=c("robust","outer","obs"),...) {
    if (!missing(data)) {
        y <- model.frame(x$formula,data)[,1]
        X <- model.matrix(x$formula,data)
        Z <- model.matrix(x$formula.p,data)
        I <- zibreg_information(beta,gamma,y,X,Z,offset,x$family,type=type,...)
    } else {
        I <- zibreg_information(beta,gamma,x$y,x$X,x$Z,offset,x$family,type=type,...)
    }
    colnames(I) <- rownames(I) <- names(x$coef)
    return(I)
}

zibreg_information <- function(beta,gamma,y,X,Z,offset=NULL,family=stats::binomial(),type=c("outer","obs","robust"),...) {
    if (tolower(type[1])%in%c("obs","hessian")) {
        beta.idx <- seq(ncol(X)); gamma.idx <- seq(ncol(Z))+ncol(X)
        I <- -numDeriv::jacobian(function(x)
            zibreg_score(x[beta.idx],x[gamma.idx],y,X,Z,offset,family,...),c(beta,gamma))
        return(I)
    }
    if (tolower(type[1])%in%c("robust","sandwich")) {
        I <- zibreg_information(beta,gamma,y,X,Z,offset,family,type="obs")
        J <- zibreg_information(beta,gamma,y,X,Z,offset,family,type="outer")
        return(J%*%Inverse(I)%*%J)
    }
    S <- zibreg_score(beta,gamma,y,X,Z,offset,family,indiv=TRUE,...)
    crossprod(S)
}