File: README.md

package info (click to toggle)
r-cran-lava 1.8.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,816 kB
  • sloc: sh: 13; makefile: 2
file content (288 lines) | stat: -rw-r--r-- 9,238 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
<!-- badges: start -->
  [![R-CMD-check](https://github.com/kkholst/lava/workflows/R-CMD-check/badge.svg?branch=main)](https://github.com/kkholst/lava/actions)
  [![coverage](https://codecov.io/github/kkholst/lava/coverage.svg?branch=main)](https://app.codecov.io/github/kkholst/lava?branch=main)
  [![cran](https://www.r-pkg.org/badges/version-last-release/lava)](https://CRAN.R-project.org/package=lava)
  [![cran-dl](https://cranlogs.r-pkg.org/badges/lava)](https://cranlogs.r-pkg.org/downloads/total/last-month/lava)
<!-- badges: end -->




# Latent Variable Models: `lava` 

A general implementation of Structural Equation Models with latent variables
(MLE, 2SLS, and composite likelihood estimators) with both continuous, censored,
and ordinal outcomes (Holst and Budtz-Joergensen (2013)
<10.1007/s00180-012-0344-y>). <img src=man/figures/lvm1-1.png align="right" height="150">
Mixture latent variable models and non-linear
latent variable models (Holst and Budtz-Joergensen (2020)
<10.1093/biostatistics/kxy082>). The package also provides methods for graph
exploration (d-separation, back-door criterion), simulation of general
non-linear latent variable models, and estimation of influence functions for a
broad range of statistical models.


## Installation


```r
install.packages("lava", dependencies=TRUE)
library("lava")
demo("lava")
```

For graphical capabilities the `Rgraphviz` package is needed (first install the `BiocManager` package)


```r
# install.packages("BiocManager")
BiocManager::install("Rgraphviz")
```

or the `igraph` or `visNetwork` packages


```r
install.packages("igraph")
install.packages("visNetwork")
```

The development version of `lava` may also be installed directly from `github`:


```r
# install.packages("remotes")
remotes::install_github("kkholst/lava")
```


## Citation

To cite that `lava` package please use one of the following references

> Klaus K. Holst and Esben Budtz-Joergensen (2013).
> Linear Latent Variable Models: The lava-package.
> Computational Statistics 28 (4), pp 1385-1453.
> <http://dx.doi.org/10.1007/s00180-012-0344-y>

    @article{lava,
      title = {Linear Latent Variable Models: The lava-package},
      author = {Klaus Kähler Holst and Esben Budtz-Jørgensen},
      year = {2013},
      volume = {28},
      number = {4},
      pages = {1385-1452},
      journal = {Computational Statistics},
      doi = {10.1007/s00180-012-0344-y}
    }

> Klaus K. Holst and Esben Budtz-Jørgensen (2020). A two-stage estimation
> procedure for non-linear structural equation models. Biostatistics 21 (4), pp 676-691.
> <http://dx.doi.org/10.1093/biostatistics/kxy082>

    @article{lava_nlin,
      title = {A two-stage estimation procedure for non-linear structural equation models},
      author = {Klaus Kähler Holst and Esben Budtz-Jørgensen},
      journal = {Biostatistics},
      year = {2020},
      volume = {21},
      number = {4},
      pages = {676-691},
      doi = {10.1093/biostatistics/kxy082},
    }


## Examples




### Structural Equation Model

Specify structural equation models with two factors


```r
m <- lvm()
regression(m) <- y1 + y2 + y3 ~ eta1
regression(m) <- z1 + z2 + z3 ~ eta2
latent(m) <- ~ eta1 + eta2
regression(m) <- eta2 ~ eta1 + x
regression(m) <- eta1 ~ x

labels(m) <- c(eta1=expression(eta[1]), eta2=expression(eta[2]))
plot(m)
```

<img src="man/figures/lvm1-1.png" title="plot of chunk lvm1" alt="plot of chunk lvm1" width="50%" style="display: block; margin: auto;" />

Simulation


```r
d <- sim(m, 100, seed=1)
```

Estimation


```r
e <- estimate(m, d)
e
#>                     Estimate Std. Error  Z-value   P-value
#> Measurements:                                             
#>    y2~eta1           0.95462    0.08083 11.80993    <1e-12
#>    y3~eta1           0.98476    0.08922 11.03722    <1e-12
#>     z2~eta2          0.97038    0.05368 18.07714    <1e-12
#>     z3~eta2          0.95608    0.05643 16.94182    <1e-12
#> Regressions:                                              
#>    eta1~x            1.24587    0.11486 10.84694    <1e-12
#>     eta2~eta1        0.95608    0.18008  5.30910 1.102e-07
#>     eta2~x           1.11495    0.25228  4.41951 9.893e-06
#> Intercepts:                                               
#>    y2               -0.13896    0.12458 -1.11537    0.2647
#>    y3               -0.07661    0.13869 -0.55241    0.5807
#>    eta1              0.15801    0.12780  1.23644    0.2163
#>    z2               -0.00441    0.14858 -0.02969    0.9763
#>    z3               -0.15900    0.15731 -1.01076    0.3121
#>    eta2             -0.14143    0.18380 -0.76949    0.4416
#> Residual Variances:                                       
#>    y1                0.69684    0.14858  4.69004          
#>    y2                0.89804    0.16630  5.40026          
#>    y3                1.22456    0.21182  5.78109          
#>    eta1              0.93620    0.19623  4.77084          
#>    z1                1.41422    0.26259  5.38570          
#>    z2                0.87569    0.19463  4.49934          
#>    z3                1.18155    0.22640  5.21883          
#>    eta2              1.24430    0.28992  4.29195
```


### Model assessment

Assessing goodness-of-fit, here the linearity between eta2 and eta1 (requires the `gof` package)


```r
# install.packages("gof", repos="https://kkholst.github.io/r_repo/")
library("gof")
set.seed(1)
g <- cumres(e, eta2 ~ eta1)
plot(g)
```

<img src="man/figures/gof1-1.png" title="plot of chunk gof1" alt="plot of chunk gof1" width="50%" style="display: block; margin: auto;" />


### Non-linear measurement error model

Simulate non-linear model


```r
m <- lvm(y1 + y2 + y3 ~ u, u ~ x)
transform(m,u2 ~ u) <- function(x) x^2
regression(m) <- z~u2+u

d <- sim(m,200,p=c("z"=-1, "z~u2"=-0.5), seed=1)
```

Stage 1:


```r
m1 <- lvm(c(y1[0:s], y2[0:s], y3[0:s]) ~ 1*u, u ~ x)
latent(m1) <- ~ u
(e1 <- estimate(m1, d))
#>                     Estimate Std. Error  Z-value  P-value
#> Regressions:                                             
#>    u~x               1.06998    0.08208 13.03542   <1e-12
#> Intercepts:                                              
#>    u                -0.08871    0.08753 -1.01344   0.3108
#> Residual Variances:                                      
#>    y1                1.00054    0.07075 14.14214         
#>    u                 1.19873    0.15503  7.73233
```

Stage 2


```r
pp <- function(mu,var,data,...) cbind(u=mu[,"u"], u2=mu[,"u"]^2+var["u","u"])
(e <- measurement.error(e1, z~1+x, data=d, predictfun=pp))
#>             Estimate Std.Err    2.5%   97.5%   P-value
#> (Intercept)  -1.1181 0.13795 -1.3885 -0.8477 5.273e-16
#> x            -0.0537 0.13213 -0.3127  0.2053 6.844e-01
#> u             1.0039 0.11504  0.7785  1.2294 2.609e-18
#> u2           -0.4718 0.05213 -0.5740 -0.3697 1.410e-19
```


```r
f <- function(p) p[1]+p["u"]*u+p["u2"]*u^2
u <- seq(-1, 1, length.out=100)
plot(e, f, data=data.frame(u))
```

<img src="man/figures/nlin1-1.png" title="plot of chunk nlin1" alt="plot of chunk nlin1" width="50%" style="display: block; margin: auto;" />


### Simulation

Studying the small-sample properties of a mediation analysis


```r
m <- lvm(y~x, c~1)
regression(m) <- y+x ~ z
eventTime(m) <- t~min(y=1, c=0)
transform(m,S~t+status) <- function(x) survival::Surv(x[,1],x[,2])
```


```r
plot(m)
```

<img src="man/figures/mediation1-1.png" title="plot of chunk mediation1" alt="plot of chunk mediation1" width="50%" style="display: block; margin: auto;" />

Simulate from model and estimate indirect effects


```r
onerun <- function(...) {
    d <- sim(m, 100)
    m0 <- lvm(S~x+z, x~z)
    e <- estimate(m0, d, estimator="glm")
    vec(summary(effects(e, S~z))$coef[,1:2])
}
val <- sim(onerun, 100)
summary(val, estimate=1:4, se=5:8, short=TRUE)
#> 100 replications					Time: 3.667s
#> 
#>         Total.Estimate Direct.Estimate Indirect.Estimate S~x~z.Estimate
#> Mean           1.97292         0.96537           1.00755        1.00755
#> SD             0.16900         0.18782           0.15924        0.15924
#> SE             0.18665         0.18090           0.16431        0.16431
#> SE/SD          1.10446         0.96315           1.03183        1.03183
#>                                                                        
#> Min            1.47243         0.54497           0.54554        0.54554
#> 2.5%           1.63496         0.61228           0.64914        0.64914
#> 50%            1.95574         0.97154           0.99120        0.99120
#> 97.5%          2.27887         1.32443           1.27807        1.27807
#> Max            2.45746         1.49491           1.33446        1.33446
#>                                                                        
#> Missing        0.00000         0.00000           0.00000        0.00000
```

Add additional simulations and visualize results


```r
val <- sim(val,500) ## Add 500 simulations
plot(val, estimate=c("Total.Estimate", "Indirect.Estimate"),
     true=c(2, 1), se=c("Total.Std.Err", "Indirect.Std.Err"),
     scatter.plot=TRUE)
```

<img src="man/figures/simres1-1.png" title="plot of chunk simres1" alt="plot of chunk simres1" width="50%" style="display: block; margin: auto;" />