File: confint.lvmfit.Rd

package info (click to toggle)
r-cran-lava 1.8.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,816 kB
  • sloc: sh: 13; makefile: 2
file content (80 lines) | stat: -rw-r--r-- 2,124 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/confint.R
\name{confint.lvmfit}
\alias{confint.lvmfit}
\alias{confint.multigroupfit}
\title{Calculate confidence limits for parameters}
\usage{
\method{confint}{lvmfit}(
  object,
  parm = seq_len(length(coef(object))),
  level = 0.95,
  profile = FALSE,
  curve = FALSE,
  n = 20,
  interval = NULL,
  lower = TRUE,
  upper = TRUE,
  ...
)
}
\arguments{
\item{object}{\code{lvm}-object.}

\item{parm}{Index of which parameters to calculate confidence limits for.}

\item{level}{Confidence level}

\item{profile}{Logical expression defining whether to calculate confidence
limits via the profile log likelihood}

\item{curve}{if FALSE and profile is TRUE, confidence limits are
returned. Otherwise, the profile curve is returned.}

\item{n}{Number of points to evaluate profile log-likelihood in
over the interval defined by \code{interval}}

\item{interval}{Interval over which the profiling is done}

\item{lower}{If FALSE the lower limit will not be estimated (profile intervals only)}

\item{upper}{If FALSE the upper limit will not be estimated (profile intervals only)}

\item{\dots}{Additional arguments to be passed to the low level functions}
}
\value{
A 2xp matrix with columns of lower and upper confidence limits
}
\description{
Calculate Wald og Likelihood based (profile likelihood) confidence intervals
}
\details{
Calculates either Wald confidence limits: \deqn{\hat{\theta} \pm
z_{\alpha/2}*\hat\sigma_{\hat\theta}} or profile likelihood confidence
limits, defined as the set of value \eqn{\tau}:
\deqn{logLik(\hat\theta_{\tau},\tau)-logLik(\hat\theta)< q_{\alpha}/2}

where \eqn{q_{\alpha}} is the \eqn{\alpha} fractile of the \eqn{\chi^2_1}
distribution, and \eqn{\hat\theta_{\tau}} are obtained by maximizing the
log-likelihood with tau being fixed.
}
\examples{

m <- lvm(y~x)
d <- sim(m,100)
e <- estimate(lvm(y~x), d)
confint(e,3,profile=TRUE)
confint(e,3)
\donttest{ ## Reduce Ex.timings
B <- bootstrap(e,R=50)
B
}
}
\seealso{
\code{\link{bootstrap}{lvm}}
}
\author{
Klaus K. Holst
}
\keyword{models}
\keyword{regression}