1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/constrain.R
\name{constrain<-}
\alias{constrain<-}
\alias{constrain}
\alias{constrain.default}
\alias{constrain<-.multigroup}
\alias{constrain<-.default}
\alias{constraints}
\alias{parameter<-}
\title{Add non-linear constraints to latent variable model}
\usage{
\method{constrain}{default}(x,par,args,endogenous=TRUE,...) <- value
\method{constrain}{multigroup}(x,par,k=1,...) <- value
constraints(object,data=model.frame(object),vcov=object$vcov,level=0.95,
p=pars.default(object),k,idx,...)
}
\arguments{
\item{x}{\code{lvm}-object}
\item{\dots}{Additional arguments to be passed to the low level functions}
\item{value}{Real function taking args as a vector argument}
\item{par}{Name of new parameter. Alternatively a formula with lhs
specifying the new parameter and the rhs defining the names of the
parameters or variable names defining the new parameter (overruling the
\code{args} argument).}
\item{args}{Vector of variables names or parameter names that are used in
defining \code{par}}
\item{endogenous}{TRUE if variable is endogenous (sink node)}
\item{k}{For multigroup models this argument specifies which group to
add/extract the constraint}
\item{object}{\code{lvm}-object}
\item{data}{Data-row from which possible non-linear constraints should be
calculated}
\item{vcov}{Variance matrix of parameter estimates}
\item{level}{Level of confidence limits}
\item{p}{Parameter vector}
\item{idx}{Index indicating which constraints to extract}
}
\value{
A \code{lvm} object.
}
\description{
Add non-linear constraints to latent variable model
}
\details{
Add non-linear parameter constraints as well as non-linear associations
between covariates and latent or observed variables in the model (non-linear
regression).
As an example we will specify the follow multiple regression model:
\deqn{E(Y|X_1,X_2) = \alpha + \beta_1 X_1 + \beta_2 X_2} \deqn{V(Y|X_1,X_2)
= v}
which is defined (with the appropiate parameter labels) as
\code{m <- lvm(y ~ f(x,beta1) + f(x,beta2))}
\code{intercept(m) <- y ~ f(alpha)}
\code{covariance(m) <- y ~ f(v)}
The somewhat strained parameter constraint \deqn{ v =
\frac{(beta1-beta2)^2}{alpha}}
can then specified as
\code{constrain(m,v ~ beta1 + beta2 + alpha) <- function(x)
(x[1]-x[2])^2/x[3] }
A subset of the arguments \code{args} can be covariates in the model,
allowing the specification of non-linear regression models. As an example
the non-linear regression model \deqn{ E(Y\mid X) = \nu + \Phi(\alpha +
\beta X)} where \eqn{\Phi} denotes the standard normal cumulative
distribution function, can be defined as
\code{m <- lvm(y ~ f(x,0)) # No linear effect of x}
Next we add three new parameters using the \code{parameter} assigment
function:
\code{parameter(m) <- ~nu+alpha+beta}
The intercept of \eqn{Y} is defined as \code{mu}
\code{intercept(m) <- y ~ f(mu)}
And finally the newly added intercept parameter \code{mu} is defined as the
appropiate non-linear function of \eqn{\alpha}, \eqn{\nu} and \eqn{\beta}:
\code{constrain(m, mu ~ x + alpha + nu) <- function(x)
pnorm(x[1]*x[2])+x[3]}
The \code{constraints} function can be used to show the estimated non-linear
parameter constraints of an estimated model object (\code{lvmfit} or
\code{multigroupfit}). Calling \code{constrain} with no additional arguments
beyound \code{x} will return a list of the functions and parameter names
defining the non-linear restrictions.
The gradient function can optionally be added as an attribute \code{grad} to
the return value of the function defined by \code{value}. In this case the
analytical derivatives will be calculated via the chain rule when evaluating
the corresponding score function of the log-likelihood. If the gradient
attribute is omitted the chain rule will be applied on a numeric
approximation of the gradient.
}
\examples{
##############################
### Non-linear parameter constraints 1
##############################
m <- lvm(y ~ f(x1,gamma)+f(x2,beta))
covariance(m) <- y ~ f(v)
d <- sim(m,100)
m1 <- m; constrain(m1,beta ~ v) <- function(x) x^2
## Define slope of x2 to be the square of the residual variance of y
## Estimate both restricted and unrestricted model
e <- estimate(m,d,control=list(method="NR"))
e1 <- estimate(m1,d)
p1 <- coef(e1)
p1 <- c(p1[1:2],p1[3]^2,p1[3])
## Likelihood of unrestricted model evaluated in MLE of restricted model
logLik(e,p1)
## Likelihood of restricted model (MLE)
logLik(e1)
##############################
### Non-linear regression
##############################
## Simulate data
m <- lvm(c(y1,y2)~f(x,0)+f(eta,1))
latent(m) <- ~eta
covariance(m,~y1+y2) <- "v"
intercept(m,~y1+y2) <- "mu"
covariance(m,~eta) <- "zeta"
intercept(m,~eta) <- 0
set.seed(1)
d <- sim(m,100,p=c(v=0.01,zeta=0.01))[,manifest(m)]
d <- transform(d,
y1=y1+2*pnorm(2*x),
y2=y2+2*pnorm(2*x))
## Specify model and estimate parameters
constrain(m, mu ~ x + alpha + nu + gamma) <- function(x) x[4]*pnorm(x[3]+x[1]*x[2])
\donttest{ ## Reduce Ex.Timings
e <- estimate(m,d,control=list(trace=1,constrain=TRUE))
constraints(e,data=d)
## Plot model-fit
plot(y1~x,d,pch=16); points(y2~x,d,pch=16,col="gray")
x0 <- seq(-4,4,length.out=100)
lines(x0,coef(e)["nu"] + coef(e)["gamma"]*pnorm(coef(e)["alpha"]*x0))
}
##############################
### Multigroup model
##############################
### Define two models
m1 <- lvm(y ~ f(x,beta)+f(z,beta2))
m2 <- lvm(y ~ f(x,psi) + z)
### And simulate data from them
d1 <- sim(m1,500)
d2 <- sim(m2,500)
### Add 'non'-linear parameter constraint
constrain(m2,psi ~ beta2) <- function(x) x
## Add parameter beta2 to model 2, now beta2 exists in both models
parameter(m2) <- ~ beta2
ee <- estimate(list(m1,m2),list(d1,d2),control=list(method="NR"))
summary(ee)
m3 <- lvm(y ~ f(x,beta)+f(z,beta2))
m4 <- lvm(y ~ f(x,beta2) + z)
e2 <- estimate(list(m3,m4),list(d1,d2),control=list(method="NR"))
e2
}
\seealso{
\code{\link{regression}}, \code{\link{intercept}},
\code{\link{covariance}}
}
\author{
Klaus K. Holst
}
\keyword{models}
\keyword{regression}
|