File: stack.estimate.Rd

package info (click to toggle)
r-cran-lava 1.8.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,816 kB
  • sloc: sh: 13; makefile: 2
file content (61 lines) | stat: -rw-r--r-- 1,418 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/stack.R
\name{stack.estimate}
\alias{stack.estimate}
\title{Stack estimating equations}
\usage{
\method{stack}{estimate}(
  x,
  model2,
  D1u,
  inv.D2u,
  propensity,
  dpropensity,
  U,
  keep1 = FALSE,
  propensity.arg,
  estimate.arg,
  na.action = na.pass,
  ...
)
}
\arguments{
\item{x}{Model 1}

\item{model2}{Model 2}

\item{D1u}{Derivative of score of model 2 w.r.t. parameter vector of model 1}

\item{inv.D2u}{Inverse of deri}

\item{propensity}{propensity score (vector or function)}

\item{dpropensity}{derivative of propensity score wrt parameters of model 1}

\item{U}{Optional score function (model 2) as function of all parameters}

\item{keep1}{If FALSE only parameters of model 2 is returned}

\item{propensity.arg}{Arguments to propensity function}

\item{estimate.arg}{Arguments to 'estimate'}

\item{na.action}{Method for dealing with missing data in propensity score}

\item{...}{Additional arguments to lower level functions}
}
\description{
Stack estimating equations (two-stage estimator)
}
\examples{
m <- lvm(z0~x)
Missing(m, z ~ z0) <- r~x
distribution(m,~x) <- binomial.lvm()
p <- c(r=-1,'r~x'=0.5,'z0~x'=2)
beta <- p[3]/2
d <- sim(m,500,p=p,seed=1)
m1 <- estimate(r~x,data=d,family=binomial)
d$w <- d$r/predict(m1,type="response")
m2 <- estimate(z~1, weights=w, data=d)
(e <- stack(m1,m2,propensity=TRUE))
}