1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
---
title: Non-linear latent variable models and error-in-variable models
author: Klaus Kähler Holst
date: "`r Sys.Date()`"
output:
rmarkdown::html_vignette:
fig_caption: yes
fig_width: 6
fig_height: 4
vignette: >
%\VignetteIndexEntry{Non-linear latent variable models and error-in-variable models}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
bibliography: ref.bib
---
```{r include=FALSE }
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
mets <- lava:::versioncheck('mets', 1)
fullVignette <- Sys.getenv("_R_FULL_VIGNETTE_") %in% c("1","TRUE")
```
```{r load, results="hide",message=FALSE,warning=FALSE }
library('lava')
```
We consider the measurement models given by
\[X_{j} = \eta_{1} + \epsilon_{j}^{x}, \quad j=1,2,3\]
\[Y_{j} = \eta_{2} + \epsilon_{j}^{y}, \quad j=1,2,3\]
and with a structural model given by
\[\eta_{2} = f(\eta_{1}) + Z + \zeta_{2}\label{ex:eta2}\]
\[\eta_{1} = Z + \zeta_{1}\label{ex:eta1}\]
with iid measurement errors
\(\epsilon_{j}^{x},\epsilon_{j}^{y},\zeta_{1},\zeta_{2}\sim\mathcal{N}(0,1),
j=1,2,3.\) and standard normal distributed covariate \(Z\). To
simulate from this model we use the following syntax:
```{r sim }
f <- function(x) cos(1.25*x) + x - 0.25*x^2
m <- lvm(x1+x2+x3 ~ eta1, y1+y2+y3 ~ eta2, latent=~eta1+eta2)
regression(m) <- eta1+eta2 ~ z
functional(m, eta2~eta1) <- f
d <- sim(m, n=200, seed=42) # Default is all parameters are 1
```
```{r }
## plot(m, plot.engine="visNetwork")
plot(m)
```
We refer to [@holst_budtzjorgensen_2013] for details on the syntax for
model specification.
# Estimation
To estimate the parameters using the two-stage estimator described in [@holst_budtzjorgensen_2020], the first step is now to specify the measurement models
```{r specifymodels }
m1 <- lvm(x1+x2+x3 ~ eta1, eta1 ~ z, latent=~eta1)
m2 <- lvm(y1+y2+y3 ~ eta2, eta2 ~ z, latent=~eta2)
```
Next, we specify a quadratic relationship between the two latent variables
```{r }
nonlinear(m2, type="quadratic") <- eta2 ~ eta1
```
and the model can then be estimated using the two-stage estimator
```{r twostage1 }
e1 <- twostage(m1, m2, data=d)
e1
```
We see a clear statistically significant effect of the second order
term (`eta2~eta1_2`). For comparison we can also estimate the full MLE
of the linear model:
```{r linear_mle }
e0 <- estimate(regression(m1%++%m2, eta2~eta1), d)
estimate(e0,keep="^eta2~[a-z]",regex=TRUE) ## Extract coef. matching reg.ex.
```
Next, we calculate predictions from the quadratic model using the estimated parameter coefficients
\[
\mathbb{E}_{\widehat{\theta}_{2}}(\eta_{2} \mid \eta_{1}, Z=0),
\]
```{r pred1 }
newd <- expand.grid(eta1=seq(-4, 4, by=0.1), z=0)
pred1 <- predict(e1, newdata=newd, x=TRUE)
head(pred1)
```
To obtain a potential better fit we next proceed with a natural cubic spline
```{r spline_twostage }
kn <- seq(-3,3,length.out=5)
nonlinear(m2, type="spline", knots=kn) <- eta2 ~ eta1
e2 <- twostage(m1, m2, data=d)
e2
```
Confidence limits can be obtained via the Delta method using the `estimate` method:
```{r spline_ci }
p <- cbind(eta1=newd$eta1,
estimate(e2,f=function(p) predict(e2,p=p,newdata=newd))$coefmat)
head(p)
```
The fitted function can be obtained with the following code:
```{r figpred2 }
plot(I(eta2-z) ~ eta1, data=d, col=Col("black",0.5), pch=16,
xlab=expression(eta[1]), ylab=expression(eta[2]), xlim=c(-4,4))
lines(Estimate ~ eta1, data=as.data.frame(p), col="darkblue", lwd=5)
confband(p[,1], lower=p[,4], upper=p[,5], polygon=TRUE,
border=NA, col=Col("darkblue",0.2))
```
# Cross-validation
A more formal comparison of the different models can be obtained by
cross-validation. Here we specify linear, quadratic and cubic spline
models with 4 and 9 degrees of freedom.
```{r spline_several }
m2a <- nonlinear(m2, type="linear", eta2~eta1)
m2b <- nonlinear(m2, type="quadratic", eta2~eta1)
kn1 <- seq(-3,3,length.out=5)
kn2 <- seq(-3,3,length.out=8)
m2c <- nonlinear(m2, type="spline", knots=kn1, eta2~eta1)
m2d <- nonlinear(m2, type="spline", knots=kn2, eta2~eta1)
```
To assess the model fit average RMSE is estimated with 5-fold
cross-validation repeated two times
```{r cv_fit, cache=TRUE, eval=fullVignette }
## Scale models in stage 2 to allow for a fair RMSE comparison
d0 <- d
for (i in endogenous(m2))
d0[,i] <- scale(d0[,i],center=TRUE,scale=TRUE)
## Repeated 5-fold cross-validation:
ff <- lapply(list(linear=m2a,quadratic=m2b,spline4=m2c,spline6=m2d),
function(m) function(data,...) twostage(m1,m,data=data,stderr=FALSE,control=list(start=coef(e0),contrain=TRUE)))
fit.cv <- lava:::cv(ff,data=d,K=5,rep=2,mc.cores=parallel::detectCores(),seed=1)
```
```{r results="hide", echo=FALSE }
## To save time building the vignettes on CRAN, we cache time consuming computations
if (fullVignette) {
fit.cv$fit <- NULL
saveRDS(fit.cv, "data/nonlinear_fitcv.rds")
} else {
fit.cv <- readRDS("data/nonlinear_fitcv.rds")
}
```
```{r }
summary(fit.cv)
```
Here the RMSE is in favour of the splines model with 4 degrees of freedom:
```{r multifit }
fit <- lapply(list(m2a,m2b,m2c,m2d),
function(x) {
e <- twostage(m1,x,data=d)
pr <- cbind(eta1=newd$eta1,predict(e,newdata=newd$eta1,x=TRUE))
return(list(estimate=e,predict=as.data.frame(pr)))
})
plot(I(eta2-z) ~ eta1, data=d, col=Col("black",0.5), pch=16,
xlab=expression(eta[1]), ylab=expression(eta[2]), xlim=c(-4,4))
col <- c("orange","darkred","darkgreen","darkblue")
lty <- c(3,4,1,5)
for (i in seq_along(fit)) {
with(fit[[i]]$pr, lines(eta2 ~ eta1, col=col[i], lwd=4, lty=lty[i]))
}
legend("bottomright",
c("linear","quadratic","spline(df=4)","spline(df=6)"),
col=col, lty=lty, lwd=3)
```
For convenience, the function `twostageCV` can be used to do the
cross-validation (also for choosing the mixture distribution via the \`\`nmix\`\` argument, see the section
below). For example,
```{r twostageCV, cache=TRUE, eval=fullVignette }
selmod <- twostageCV(m1, m2, data=d, df=2:4, nmix=1:2,
nfolds=2, rep=1, mc.cores=parallel::detectCores())
```
```{r results="hide", echo=FALSE }
## To save time building the vignettes on CRAN, we cache time consuming computations
if (fullVignette) {
saveRDS(summary(selmod), "data/nonlinear_selmod.rds")
} else {
selmod <- readRDS("data/nonlinear_selmod.rds")
}
```
applies cross-validation (here just 2 folds for simplicity) to select the best splines with
degrees of freedom varying from from 1-3 (the linear model is
automatically included)
```{r }
selmod
```
# Specification of general functional forms
Next, we show how to specify a general functional relation of
multiple different latent or exogenous variables. This is achieved via
the `predict.fun` argument. To illustrate this we include interactions
between the latent variable \(\eta_{1}\) and a dichotomized version of
the covariate \(z\)
```{r }
d$g <- (d$z<0)*1 ## Group variable
mm1 <- regression(m1, ~g) # Add grouping variable as exogenous variable (effect specified via 'predict.fun')
mm2 <- regression(m2, eta2~ u1+u2+u1:g+u2:g+z)
pred <- function(mu,var,data,...) {
cbind("u1"=mu[,1],"u2"=mu[,1]^2+var[1],
"u1:g"=mu[,1]*data[,"g"],"u2:g"=(mu[,1]^2+var[1])*data[,"g"])
}
ee1 <- twostage(mm1, model2=mm2, data=d, predict.fun=pred)
estimate(ee1,keep="eta2~u",regex=TRUE)
```
A formal test show no statistically significant effect of this interaction
```{r }
summary(estimate(ee1,keep="(:g)", regex=TRUE))
```
# Mixture models
Lastly, we demonstrate how the distributional assumptions of stage 1
model can be relaxed by letting the conditional distribution of the
latent variable given covariates follow a Gaussian mixture
distribution. The following code explictly defines the parameter
constraints of the model by setting the intercept of the first
indicator variable, \(x_{1}\), to zero and the factor loading
parameter of the same variable to one.
```{r }
m1 <- baptize(m1) ## Label all parameters
intercept(m1, ~x1+eta1) <- list(0,NA) ## Set intercept of x1 to zero. Remove the label of eta1
regression(m1,x1~eta1) <- 1 ## Factor loading fixed to 1
```
The mixture model may then be estimated using the `mixture` method
(note, this requires the `mets` package to be installed), where the
Parameter names shared across the different mixture components given
in the `list` will be constrained to be identical in the mixture
model. Thus, only the intercept of \(\eta_{1}\) is allowed to vary
between the mixtures.
```{r mixture1, cache=TRUE, eval=fullVignette }
set.seed(1)
em0 <- mixture(m1, k=2, data=d)
```
To decrease the risk of using a local maximizer of the likelihood we
can rerun the estimation with different random starting values
```{r estmixture, cache=TRUE,warnings=FALSE,messages=FALSE,eval=FALSE }
em0 <- NULL
ll <- c()
for (i in 1:5) {
set.seed(i)
em <- mixture(m1, k=2, data=d, control=list(trace=0))
ll <- c(ll,logLik(em))
if (is.null(em0) || logLik(em0)<tail(ll,1))
em0 <- em
}
```
```{r results="hide", echo=FALSE }
## To save time building the vignettes on CRAN, we cache time consuming computations
if (fullVignette) {
saveRDS(em0, "data/nonlinear_em0.rds")
} else {
em0 <- readRDS("data/nonlinear_em0.rds")
}
```
```{r }
summary(em0)
```
Measured by AIC there is a slight improvement in the model fit using the mixture model
```{r eval=mets }
e0 <- estimate(m1,data=d)
AIC(e0,em0)
```
The spline model may then be estimated as before with the `two-stage` method
```{r eval=mets }
em2 <- twostage(em0,m2,data=d)
em2
```
In this example the results are very similar to the Gaussian model:
```{r mixturefit, eval=mets }
plot(I(eta2-z) ~ eta1, data=d, col=Col("black",0.5), pch=16,
xlab=expression(eta[1]), ylab=expression(eta[2]))
lines(Estimate ~ eta1, data=as.data.frame(p), col="darkblue", lwd=5)
confband(p[,1], lower=p[,4], upper=p[,5], polygon=TRUE,
border=NA, col=Col("darkblue",0.2))
pm <- cbind(eta1=newd$eta1,
estimate(em2, f=function(p) predict(e2,p=p,newdata=newd))$coefmat)
lines(Estimate ~ eta1, data=as.data.frame(pm), col="darkred", lwd=5)
confband(pm[,1], lower=pm[,4], upper=pm[,5], polygon=TRUE,
border=NA, col=Col("darkred",0.2))
legend("bottomright", c("Gaussian","Mixture"),
col=c("darkblue","darkred"), lwd=2, bty="n")
```
# SessionInfo
```{r }
sessionInfo()
```
# Bibliography
|