1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
### calcType1postSelection.R ---
#----------------------------------------------------------------------
## author: Brice Ozenne
## created: aug 31 2017 (16:42)
## Version:
## last-updated: feb 4 2019 (09:40)
## By: Brice Ozenne
## Update #: 130
#----------------------------------------------------------------------
##
### Commentary:
##
### Change Log:
#----------------------------------------------------------------------
##
### Code:
## * Documentation - calcType1postSelection
##' @title Compute the Type 1 Error After Selection [EXPERIMENTAL]
##' @description Compute the type 1 error after selection [EXPERIMENTAL].
##' @name calcType1postSelection
##'
##' @param level [numeric 0-1] expected coverage.
##' @param mu [numeric vector] the expectation of the joint distribution of the test statistics
##' @param Sigma [matrix] the variance-covariance of the joint distribution of the test statistics.
##' @param quantile.previous [numeric] significance quantile used at the previous step.
##' @param df [integer > 0] the degree of freedom of the joint Student's t distribution.
##' Only used when \code{distribution="pvmt"}.
##' @param n [integer > 0] number of points for the numerical integration
##' @param distribution [character] distribution of the test statistics.
##' Can be \code{"pmvnorm"} (normal distribution) or \code{"pvmt"} (Student's t distribution)
##' @param correct [logical] if true, correct the level to account for previous testings.
##' @param ... arguments passed to \code{\link{intDensTri}}.
##'
##' @details The number of tests at the current step (i.e. after selection) is assumed to be
##' one less than the number of tests at the previous step (i.e. before selection).
##'
##' Arguments \code{mu} and \code{Sigma} must contain the moments for the vector of test statistics
##' before and after selection (in that order).
##'
##' @return [numeric] the type 1 error.
##' @author Brice Ozenne
##' @examples
##' library(mvtnorm)
##' n <- 350
##'
##' #### only 2 tests
##' Sigma <- rbind(c(1,0,0),c(0,1,1),c(0,1,1))
##' z2 <- qmvnorm(0.95, mean = rep(0,2), sigma = Sigma[1:2,1:2], tail = "both.tails")$quantile
##'
##' ## no selection since strong effect
##' mu <- c(10,0,0)
##' calcType1postSelection(0.95, quantile.previous = z2, distribution = "gaussian",
##' mu = mu, Sigma = Sigma, correct = TRUE)
##'
##' ## strong selection
##' \dontrun{
##' mu <- c(0,0,0)
##' levelC <- calcType1postSelection(0.95, quantile.previous = z2, distribution = "gaussian",
##' mu = mu, Sigma = Sigma)
##' print(levelC) # more liberal than without selection
##' calcType1postSelection(levelC, quantile.previous = z2, distribution = "gaussian",
##' mu = mu, Sigma = Sigma, correct = FALSE)
##' }
##'
##' #### 3 tests
##' Sigma <- diag(1,5,5)
##' Sigma[4,2] <- 1
##' Sigma[2,4] <- 1
##' Sigma[5,3] <- 1
##' Sigma[3,5] <- 1
##'
##' z2 <- qmvnorm(0.95, mean = mu[1:3], sigma = Sigma[1:3,1:3], tails = "both.tails")$quantile
##'
##' ## no selection since strong effect
##' \dontrun{
##' mu <- c(10,0,0,0,0)
##' calcType1postSelection(0.95, quantile.previous = z2, distribution = "gaussian",
##' mu = mu, Sigma = Sigma, correct = TRUE)
##'
##' ## strong selection
##' mu <- c(0,0,0,0,0)
##' levelC <- calcType1postSelection(0.95, quantile.previous = z2,
##' mu = mu, Sigma = Sigma, distribution = "gaussian")
##' calcType1postSelection(levelC, quantile.previous = z2, distribution = "gaussian",
##' mu = mu, Sigma = Sigma, correct = FALSE)
##' }
##'
##' @concept post-selection inference
## * calcType1postSelection
##' @rdname calcType1postSelection
##' @export
calcType1postSelection <- function(level, mu, Sigma, quantile.previous, distribution, df,
n = 10, correct = TRUE, ...){
## ** normalisation of the arguments
p <- length(mu)
if(p %% 2 == 0){
stop("\'mu\' must have uneven length\n",
"since it contains the means for the test statistics at the previous step (p+1)/2",
"and those at the current step (p-1)/2")
}
if(NCOL(Sigma)!=p || NROW(Sigma)!=p){
stop("\'Sigma\' must be a pxp matrix where p is the length of \'mu\' \n")
}
nTest <- (p-1)/2
distribution <- match.arg(distribution, choices = c("student","gaussian"))
if(distribution=="student"){
pdist <- "pmvt"
qdist <- "qmvt"
args.dist <- list(delta = rep(0,nTest),
sigma = Sigma[1:nTest,1:nTest,drop=FALSE],
tail = "both.tails", df = df)
}else if(distribution=="gaussian"){
pdist <- "pmvnorm"
qdist <- "qmvnorm"
args.dist <- list(delta = rep(0,nTest),
sigma = Sigma[1:nTest,1:nTest,drop=FALSE],
tail = "both.tails")
}
## ** wrapper
warper <- function(x){ # x <- 0.95## level
# P[A|B] = 1-P[\bar{A}|B] = 1-P[\bar{A},B]/P[B]
## Current quantile
args.dist$p <- x
newQuantile <- do.call(qdist, args = args.dist)$quantile
## Compute type one error
num <- intDensTri(mu = mu, Sigma = Sigma, df = df, n=n,
x.min = quantile.previous, z.max = rep(newQuantile, nTest),
distribution = pdist, ...) # P[\bar{A},B]
# autoplot(num, coord.plot = c("x","z"))
denum <- intDensTri(mu = mu[1:(nTest+1)], Sigma = Sigma[1:(nTest+1),1:(nTest+1)], df = df, n=n,
x.min = quantile.previous, z.max = NULL,
distribution = pdist, ...) # P[B]
out <- 1-num$value/denum$value
return(out)
}
## ** compute type1 error
if(correct){
out <- stats::optim(par = level, fn = function(x){
obj <- abs((1-level)-warper(x))
# cat("level:",x," obj:",obj,"\n")
return(obj)
},
method = "Brent", lower = 0.51, upper = 0.999,
control = list(abstol = 1e-4, reltol = 1e-4)
)$par
}else{
out <- warper(level)
}
return(out)
}
#----------------------------------------------------------------------
### calcType1postSelection.R ends here
|