File: defineCategoricalLink.R

package info (click to toggle)
r-cran-lavasearch2 2.0.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,832 kB
  • sloc: cpp: 28; sh: 13; makefile: 2
file content (167 lines) | stat: -rw-r--r-- 6,727 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
### defineCategoricalLink.R --- 
#----------------------------------------------------------------------
## author: Brice Ozenne
## created: okt 26 2017 (16:35) 
## Version: 
## last-updated: aug  6 2018 (15:32) 
##           By: Brice Ozenne
##     Update #: 156
#----------------------------------------------------------------------
## 
### Commentary: 
## 
### Change Log:
#----------------------------------------------------------------------
## 
### Code:

## * documentation - defineCategoricalLink
#' @title Identify Categorical Links in LVM
#' @description Identify categorical links in latent variable models.
#' @name defineCategoricalLink
#' 
#' @param object a \code{lvm} model.
#' @param link [character] the links to be analyzed. If \code{NULL}, all the coefficients from the lvm model are used instead.
#' @param data [data.frame] the dataset that will be used to fit the model. If \code{NULL}, a simulated data will be generated from the model.
#'
#' @return a \code{data.frame} with a description of each link in rows. \cr
#' The column factitious identify the links that will be replaced with other links
#' (e.g. "Y1~X1" becomes "Y1~X1b" and "Y1~X1c"). \cr
#' 
#' @examples
#' \dontrun{
#' defineCategoricalLink <- lavaSearch2:::defineCategoricalLink
#' defineCategoricalLink.lvm <- lavaSearch2:::defineCategoricalLink.lvm
#' 
#' ## linear model
#' m <- lvm(Y1~X1+X2,Y2~X1+X3)
#' categorical(m, K = 3) <- "X1"
#' try(defineCategoricalLink(m)) # error
#'
#' categorical(m, K = 3, labels = 1:3) <- "X1"
#' defineCategoricalLink(m)
#' defineCategoricalLink(m, "Y~X1")
#' defineCategoricalLink(m, "X1:0|1")
#' defineCategoricalLink(m, "X1:1|2")
#' defineCategoricalLink(m, c("X1:0|1", "X1:1|2"))
#' defineCategoricalLink(m, c("Y~X1","Y~X2"))
#' defineCategoricalLink(m, c("Y~X2","Y~X1"))
#'
#' ## latent variable model
#' m <- lvm()
#' regression(m) <- c(y1,y2,y3)~u
#' regression(m) <- u~x1+x2
#' latent(m) <- ~u
#' covariance(m) <- y1~y2
#' categorical(m, labels = as.character(1:3)) <- "X1"
#'
#' defineCategoricalLink(m)
#'}
#' 
#' @concept setter
#' @keywords internal 
`defineCategoricalLink` <-
  function(object, link, data) UseMethod("defineCategoricalLink")


## * defineCategoricalLink.lvm
#' @rdname defineCategoricalLink
defineCategoricalLink.lvm <- function(object, link = NULL, data = NULL){

    ### ** normalize arguments
    if(is.null(link)){
        link <- stats::coef(object)
    }
    if(is.null(data)){
        data <- lava::sim(object, 1e2)
    }
    
    ### ** identify the type of regression variable (continuous or categorical)
    index.cat <- which(link %in% unlist(object$attributes$ordinalparname))
    index.Ncat <- setdiff(1:length(link), index.cat)
    link.Ncat <- setdiff(link[index.Ncat], names(object$attributes$ordinalparname))

    ### ** caracterize links involving categorical variables    
    if(length(index.cat)>0){
        link.cat <- link[index.cat]
        xCAT <- lava_categorical2dummy(object, data)$x

        ## *** find exogenous variable
        X.name.cat <- sapply(link.cat, function(iL){
            test <- unlist(lapply(object$attributes$ordinalparname, function(vec.coef){iL %in% vec.coef}))
            return(names(object$attributes$ordinalparname)[test])
        })
        UX.name.cat <- unique(X.name.cat)
    
        ## *** find the level of the exogenous variable
        X.level.cat <- unlist(lapply(UX.name.cat, function(iL){ 
            if(iL %in% names(xCAT$attributes$labels)){
                labels <- xCAT$attributes$labels[[iL]]
                index.label <- which(object$attributes$ordinalparname[[iL]] %in% link.cat)                
                return(labels[1+index.label])
            }else {
                stop("Categorical variables must have labels. Specify argument \'labels\' when calling categorical. \n")
            }            
        }))

        ## *** find endogenous variable
        M.link <- xCAT$M[paste0(X.name.cat,X.level.cat),,drop = FALSE]
        M.link <- cbind(M.link, as.numeric(rowSums(M.link)==0))

        convertion.back <- stats::setNames(X.name.cat,paste0(X.name.cat,X.level.cat))
                
        indexLink <- which(M.link==1, arr.ind = TRUE)
        Y.name.allcat <- colnames(M.link)[indexLink[,"col"]]
        X.name.allcat <- as.character(convertion.back[rownames(M.link)][indexLink[,"row"]])
        
        ## *** characterize all links
        Xcat.name.allcat <- rownames(M.link)[indexLink[,"row"]]
        X.level.allcat <- as.character(X.level.cat[indexLink[,"row"]])
        external.link.allcat <- link[index.cat[indexLink[,"row"]]]
        original.link.allcat <- paste0(Y.name.allcat, lava.options()$symbol[1], X.name.allcat)
        original.link.allcat[Y.name.allcat == ""] <- gsub("~","",original.link.allcat[Y.name.allcat == ""])
        cat.link.allcat <- paste0(Y.name.allcat, lava.options()$symbol[1], Xcat.name.allcat)
        cat.link.allcat[Y.name.allcat == ""] <- gsub("~","",cat.link.allcat[Y.name.allcat == ""])
        
        df.cat <- data.frame(link = cat.link.allcat,
                             endogenous = Y.name.allcat,
                             exogenous = X.name.allcat,
                             type = "categorical",
                             factitious = FALSE,
                             level = X.level.allcat,
                             originalLink = original.link.allcat,
                             externalLink = external.link.allcat,
                             stringsAsFactors = FALSE)       

    }else{
            df.cat <- NULL
    }

### ** caracterize links involving continuous variables    
    if(length(index.Ncat)>0){

        var.tempo <- initVarLinks(link.Ncat)
        Y.name.Ncat <- var.tempo$var1
        X.name.Ncat <- var.tempo$var2
        test.factitious <- X.name.Ncat %in% names(object$attributes$ordinalparname)

        df.Ncat <- data.frame(link = link.Ncat,
                              endogenous = Y.name.Ncat,
                              exogenous = X.name.Ncat,
                              type = "continuous",
                              factitious = test.factitious,
                              level = NA,
                              originalLink = link.Ncat,
                              externalLink = NA,
                              stringsAsFactors = FALSE)       
    }else{
        df.Ncat <- NULL
    }
    
    ### ** export
    out <- rbind(df.Ncat,df.cat)
    return(out)
}

#----------------------------------------------------------------------
### defineCategoricalLink.R ends here