1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
### iidJack.R ---
#----------------------------------------------------------------------
## author: Brice Ozenne
## created: jun 23 2017 (09:15)
## Version:
## last-updated: Jan 11 2022 (16:08)
## By: Brice Ozenne
## Update #: 333
#----------------------------------------------------------------------
##
### Commentary:
##
### Change Log:
#----------------------------------------------------------------------
##
### Code:
## * documentation - iidJack
#' @title Jackknife iid Decomposition from Model Object
#' @description Extract iid decomposition (i.e. influence function) from model object.
#'
#' @name iidJack
#'
#' @param object a object containing the model.
#' @param data [data.frame] dataset used to perform the jackknife.
#' @param grouping [vector] variable defining cluster of observations that will be simultaneously removed by the jackknife.
#' @param cpus [integer >0] the number of processors to use.
#' If greater than 1, the fit of the model and the computation of the influence function for each jackknife sample is performed in parallel.
#' @param keep.warnings [logical] keep warning messages obtained when estimating the model with the jackknife samples.
#' @param keep.error [logical]keep error messages obtained when estimating the model with the jackknife samples.
#' @param cl [cluster] a parallel socket cluster generated by \code{parallel::makeCluster}
#' that has been registered using \code{registerDoParallel}.
#' @param trace [logical] should a progress bar be used to trace the execution of the function
#' @param ... [internal] only used by the generic method.
#'
#' @return A matrix with in row the samples and in columns the parameters.
#'
#' @examples
#' n <- 20
#' set.seed(10)
#' mSim <- lvm(c(Y1,Y2,Y3,Y4,Y5) ~ 1*eta)
#' latent(mSim) <- ~eta
#' categorical(mSim, K=2) <- ~G
#' transform(mSim, Id ~ eta) <- function(x){1:NROW(x)}
#' dW <- lava::sim(mSim, n, latent = FALSE)
#'
#' #### LVM ####
#' \dontrun{
#' m1 <- lvm(c(Y1,Y2,Y3,Y4,Y5) ~ 1*eta)
#' latent(m1) <- ~eta
#' regression(m1) <- eta ~ G
#' e <- estimate(m1, data = dW)
#'
#' iid1 <- iidJack(e)
#' iid2 <- iid(e)
#' attr(iid2, "bread") <- NULL
#'
#' apply(iid1,2,sd)
#' apply(iid2,2,sd)
#' quantile(iid2 - iid1)
#' }
#'
#'
#' @concept iid decomposition
#' @export
iidJack <- function(object,...) UseMethod("iidJack")
## * method iidJack.default
#' @rdname iidJack
#' @export
iidJack.default <- function(object, data = NULL, grouping = NULL, cpus = 1,
keep.warnings = TRUE, keep.error = TRUE,
cl = NULL, trace = TRUE, ...) {
estimate.lvm <- lava_estimate.lvm
## ** test args
init.cpus <- (cpus>1 && is.null(cl))
if(init.cpus){
test.package <- try(requireNamespace("foreach"), silent = TRUE)
if(inherits(test.package,"try-error")){
stop("There is no package \'foreach\' \n",
"This package is necessary when argument \'cpus\' is greater than 1 \n")
}
if(cpus > parallel::detectCores()){
stop("Argument \'cpus\' is greater than the number of available CPU cores \n",
"available CPU cores: ",parallel::detectCores(),"\n")
}
}
## ** extract data
if(is.null(data)){
myData <- extractData(object, design.matrix = FALSE, as.data.frame = TRUE,
envir = parent.env(environment()))
}else{
myData <- as.data.frame(data)
}
n.obs <- NROW(myData)
if(any(class(object) %in% "lme")){
getCoef <- nlme::fixef
}else{
getCoef <- coef
}
coef.x <- getCoef(object)
names.coef <- names(coef.x)
n.coef <- length(coef.x)
## ** update formula/model when defined by a variable and not in the current namespace
if(length(object$call[[2]])==1){
modelName <- as.character(object$call[[2]])
if(modelName %in% ls() == FALSE){
assign(modelName, value = evalInParentEnv(object$call[[2]]))
}
}
## ** define the grouping level for the data
if(is.null(grouping)){
myData$XXXgroupingXXX <- 1:n.obs
grouping <- "XXXgroupingXXX"
}else{
if(length(grouping)>1){
stop("grouping must refer to only one variable \n")
}
if(grouping %in% names(myData) == FALSE){
stop("variable defined in grouping not found in data \n")
}
}
myData[,grouping] <- as.character(myData[,grouping])
Ugrouping <- unique(myData[,grouping])
n.group <- length(Ugrouping)
## ** warper
warper <- function(i){ # i <- "31"
newData <- subset(myData, subset = myData[[grouping]]!=i)
xnew <- tryWithWarnings(stats::update(object, data = newData))
if(!is.null(xnew$error)){
xnew$value <- rep(NA, n.coef)
}else{
xnew$value <- getCoef(xnew$value)
}
return(xnew)
}
# warper("31")
## ** start parallel computation
if(init.cpus){
## define cluster
if(trace>0){
cl <- parallel::makeCluster(cpus, outfile = "")
}else{
cl <- parallel::makeCluster(cpus)
}
## link to foreach
doParallel::registerDoParallel(cl)
}
## *** link to foreach
doParallel::registerDoParallel(cl)
## ** parallel computations: get jackknife coef
if(cpus>1){
if(trace>0){
pb <- utils::txtProgressBar(max = n.group, style = 3)
}
## *** packages/objects to export
estimator <- as.character(object$call[[1]])
vec.packages <- c("lava")
possiblePackage <- gsub("package:","",utils::getAnywhere(estimator)$where[1])
existingPackage <- as.character(utils::installed.packages()[,"Package"])
ls.call <- as.list(object$call)
test.length <- which(unlist(lapply(ls.call, length))==1)
test.class <- which(unlist(lapply(ls.call, function(cc){
(class(c) %in% c("numeric","character","logical")) == FALSE
})))
test.class <- which(unlist(lapply(ls.call, class)) %in% c("numeric","character","logical") == FALSE)
indexExport <- intersect(test.class,test.length)
toExport <- sapply(ls.call[indexExport], as.character)
if(possiblePackage %in% existingPackage){
vec.packages <- c(vec.packages,possiblePackage)
}
parallel::clusterCall(cl, fun = function(x){
sapply(vec.packages, function(iP){
suppressPackageStartupMessages(requireNamespace(iP, quietly = TRUE))
})
})
## *** objects to export
if(length(object$call$data)==1){
toExport <- c(toExport,as.character(object$call$data))
}
if(length(object$call$formula)==1){
toExport <- c(toExport,as.character(object$call$formula))
}
if(length(object$call$fixed)==1){
toExport <- c(toExport,as.character(object$call$fixed))
}
toExport <- c(unique(toExport),"tryWithWarnings")
## *** parallel computation
i <- NULL # [:for CRAN check] foreach
resLoop <- foreach::`%dopar%`(
foreach::foreach(i = 1:n.group,
.export = toExport),{
if(trace>0){utils::setTxtProgressBar(pb, i)}
return(warper(Ugrouping[i]))
})
if(trace>0){close(pb)}
}else{
if(trace>0){
test.package <- try(requireNamespace("pbapply"), silent = TRUE)
if(inherits(test.package,"try-error")){
stop("There is no package \'pbapply\' \n",
"This package is necessary when argument \'trace\' is TRUE \n")
}
resLoop <- pbapply::pblapply(Ugrouping, warper)
}else{
resLoop <- lapply(Ugrouping, warper)
}
}
coefJack <- do.call(rbind, lapply(resLoop,"[[","value"))
rownames(coefJack) <- 1:n.group
## ** end parallel computation
if(init.cpus){
parallel::stopCluster(cl)
}
## ** post treatment: from jackknife coef to the iid decomposition
# defined as (n-1)*(coef-coef(-i))
# division by n to match output of lava, i.e. IF/n
iidJack <- -(n.group-1)/n.group * sweep(coefJack, MARGIN = 2, STATS = coef.x, FUN = "-")
colnames(iidJack) <- names.coef
if(keep.warnings){
ls.warnings <- lapply(resLoop,"[[","warnings")
names(ls.warnings) <- 1:n.group
ls.warnings <- Filter(Negate(is.null), ls.warnings)
attr(iidJack,"warnings") <- ls.warnings
}
if(keep.error){
ls.error <- lapply(resLoop,"[[","error")
names(ls.error) <- 1:n.group
ls.error <- Filter(Negate(is.null), ls.error)
attr(iidJack,"error") <- ls.error
}
return(iidJack)
}
#----------------------------------------------------------------------
### iidJack.R ends here
|