1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
## * findNewLink
## ** doc findNewLink
#' @title Find all New Links Between Variables
#' @description Find all new links between variables (adapted from lava::modelsearch).
#'
#' @name findNewLink
#'
#' @param object a \code{lvm} object.
#' @param data [optional] a dataset used to identify the categorical variables when not specified in the \code{lvm} object.
#' @param exclude.var [character vector] all links related to these variables will be ignore.
#' @param type [character vector] the type of links to be considered: \code{"regression"}, \code{"covariance"}, or \code{"both"}, .
#' @param rm.latent_latent [logical] should the links relating two latent variables be ignored?
#' @param rm.endo_endo [logical] should the links relating two endogenous variables be ignored?
#' @param rm.latent_endo [logical] should the links relating one endogenous variable and one latent variable be ignored?
#' @param output [character] Specify \code{"names"} to return the names of the variables to link
#' or specify \code{"index"} to return their position.
#' @param ... [internal] only used by the generic method.
#'
#' @return A list containing:
#' \itemize{
#' \item M.links: a matrix with two columns indicating (by name or position) the exogenous and endogenous variable corresponding to each link.
#' \item links: the name of the additional possible links
#' \item directional: a logical vector indicating for each link whether the link is unidirectional (\code{TRUE}, i.e. regression link)
#' or bidirectional (\code{FALSE}, i.e. covariance link).
#' }
#'
#' @examples
#' library(lava)
#'
#' m <- lvm()
#' regression(m) <- c(y1,y2,y3)~u
#' categorical(m,labels=c("M","F","MF")) <- ~X1
#' findNewLink(m, rm.endo = FALSE)
#' findNewLink(m, rm.endo = TRUE)
#' findNewLink(m, exclude.var = "X1")
#'
#' regression(m) <- u~x1+x2
#' latent(m) <- ~u
#'
#' findNewLink(m, rm.endo = FALSE)
#' findNewLink(m, rm.endo = TRUE)
#' findNewLink(m, rm.endo = TRUE, output = "index")
#' findNewLink(m, type = "covariance")
#' findNewLink(m, type = "regression")
#'
#' @concept modelsearch
#' @export
`findNewLink` <-
function(object, ...) UseMethod("findNewLink")
## ** method findNewLink.lvm
#' @export
#' @rdname findNewLink
findNewLink.lvm <- function(object,
data = NULL,
type = "both",
exclude.var = NULL,
rm.latent_latent= FALSE,
rm.endo_endo= FALSE,
rm.latent_endo= FALSE,
output = "names",
...){
match.arg(output, choices = c("names","index"))
match.arg(type, choices = c("both","covariance","regression"))
if(is.null(data)){
data <- lava::sim(object, n = 1)
}
## *** convertion to dummy variable name for categorical variables
xF <- lava_categorical2dummy(object, data)
AP <- with(lava::index(xF$x), A + t(A) + P)
latent.xF <- latent(xF$x)
endogenous.xF <- endogenous(xF$x)
exogenous.xF <- exogenous(xF$x)
if(!is.null(exclude.var)){
exclude.var <- var2dummy(xF, exclude.var)
}
if( any(exclude.var %in% colnames(AP) == FALSE) ){
wrong.var <- exclude.var[exclude.var %in% colnames(AP) == FALSE]
stop("unknown variable to exclude \n",
"variable(s): \"",paste(wrong.var, collapse = "\" \""),"\"\n")
}
## *** loop over links
restricted <- c()
directional <- c()
for (i in seq_len(ncol(AP) - 1)){
for (j in seq(i + 1, nrow(AP))){
var.i <- rownames(AP)[i]
var.j <- rownames(AP)[j]
if(!is.null(exclude.var) && (var.i %in% exclude.var || var.j %in% exclude.var)){
next
}
isLatent.i <- var.i %in% latent.xF
isLatent.j <- var.j %in% latent.xF
isEndogenous.i <- var.i %in% endogenous.xF
isEndogenous.j <- var.j %in% endogenous.xF
isExogenous.i <- var.i %in% exogenous.xF
isExogenous.j <- var.j %in% exogenous.xF
if(rm.latent_latent && isLatent.i && isLatent.j){
next
}
if(rm.endo_endo && isEndogenous.i && isEndogenous.j){
next
}
if(isExogenous.i && isExogenous.j){
next
}
if(rm.latent_endo && ( (isLatent.i && isEndogenous.j) || (isEndogenous.i && isLatent.j) )){
next
}
iDirectional <- (isExogenous.i+isExogenous.j)>0
if(type == "regression" && iDirectional == FALSE){
next
}
if(type == "covariance" && iDirectional == TRUE){
next
}
if (AP[j, i] == 0){
restricted <- rbind(restricted, c(i, j))
directional <- c(directional, iDirectional)
}
}
}
## *** export
out <- list(M.links = restricted,
links = NULL,
directional = directional)
if(!is.null(restricted)){
M.names <- cbind(rownames(AP)[restricted[,1]],
colnames(AP)[restricted[,2]])
out$links <- paste0(M.names[,1], lava.options()$symbols[2-directional],M.names[,2])
if(output == "names"){
out$M.links <- M.names
}
}
return(out)
}
## * addLink
## ** doc addLink
#' @title Add a New Link Between Two Variables in a LVM
#' @rdname addLink
#' @description Generic interface to add links to \code{lvm} objects.
#'
#' @param object a \code{lvm} object.
#' @param var1 [character or formula] the exogenous variable of the new link or a formula describing the link to be added to the lvm.
#' @param var2 [character] the endogenous variable of the new link. Disregarded if the argument \code{var1} is a formula.
#' @param all.vars [internal] a character vector containing all the variables of the \code{lvm} object.
#' @param covariance [logical] is the link is bidirectional? Ignored if one of the variables non-stochastic (e.g. exogenous variables).
#' @param warnings [logical] Should a warning be displayed when no link is added?
#' @param ... [internal] only used by the generic method and from \code{addLink.lvm.reduced} to \code{addLink.lvm}.
#'
#' @details
#' The argument \code{all.vars} is useful for \code{lvm.reduce} object where the command \code{vars(object)} does not return all variables. The command \code{vars(object, xlp = TRUE)} must be used instead.
#'
#' Arguments \code{var1} and \code{var2} are passed to \code{initVarlink}.
#'
#' @examples
#' library(lava)
#' set.seed(10)
#'
#' m <- lvm()
#' regression(m) <- c(y1,y2,y3)~u
#' regression(m) <- u~x1+x2
#' latent(m) <- ~u
#' m2 <- m
#'
#' addLink(m, x1 ~ y1, covariance = FALSE)
#' addLink(m, y1 ~ x1, covariance = FALSE)
#' coef(addLink(m, y1 ~ y2, covariance = TRUE))
#'
#' addLink(m2, "x1", "y1", covariance = FALSE)
#' addLink(m2, "y1", "x1", covariance = FALSE)
#' newM <- addLink(m, "y1", "y2", covariance = TRUE)
#' coef(newM)
#'
#' @concept setter
#' @export
`addLink` <-
function(object, ...) UseMethod("addLink")
## ** method addLink.lvm
#' @export
#' @rdname addLink
addLink.lvm <- function(object,
var1,
var2,
covariance,
all.vars = lava::vars(object),
warnings = FALSE,
...){
res <- initVarLink(var1, var2, format = "list")
var1 <- res$var1
var2 <- res$var2
endogenous.object <- endogenous(object)
exogenous.object <- exogenous(object)
latent.object <- latent(object)
if(var1 %in% all.vars == FALSE){
if(warnings){
warning("addLink.lvm: var1 does not match any variable in object, no link is added \n",
"var1: ",var1,"\n")
}
}
####
if(is.na(var2)){
intercept(object) <- stats::as.formula(paste0("~", var1))
}else{
if(var1 == var2){
if(warnings){
warning("addLink.lvm: var1 equals var2, no link is added \n",
"var1/2: ",var1,"\n")
}
}
## if(var2 %in% all.vars == FALSE){
## if(warnings){
## warning("addLink.lvm: var2 does not match any variable in object, no link is added \n",
## "var2: ",var2,"\n")
## }
## }
if(var1 %in% endogenous.object && var2 %in% endogenous.object){
if(missing(covariance)){
covariance <- TRUE
}else if(covariance == FALSE){
stop("addLink.lvm: cannot add a link between two endogenous variable when argument \'covariance\' is FALSE \n")
}
}
if(covariance){
covariance(object) <- stats::as.formula(paste(var1, var2, sep = "~"))
}else if(var1 %in% endogenous.object || var2 %in% exogenous.object){
regression(object) <- stats::as.formula(paste(var1, var2, sep = "~"))
}else if(var2 %in% endogenous.object || var1 %in% exogenous.object){
regression(object) <- stats::as.formula(paste(var2, var1, sep = "~"))
}else {
if(var1 %in% latent.object){
regression(object) <- stats::as.formula(paste(var1, var2, sep = "~"))
}else if(var2 %in% latent.object){
regression(object) <- stats::as.formula(paste(var2, var1, sep = "~"))
}else{
stop("unknow configuration \n")
}
}
}
return(object)
}
## ** method addLink.lvm.reduced
#' @export
#' @rdname addLink
addLink.lvm.reduced <- function(object, ...){
return(addLink.lvm(object, all.vars = lava::vars(object, lp = FALSE, xlp = TRUE) , ...))
}
## * setLink
## ** Documentation - setLink
#' @title Set a Link to a Value
#' @name setLink
#' @description Generic interface to set a value to a link in a \code{lvm} object.
#'
#' @param object a \code{lvm} object.
#' @param var1 [character or formula] the exogenous variable of the new link or a formula describing the link to be added to the lvm.
#' @param var2 [character] the endogenous variable of the new link. Disregarded if the argument \code{var1} is a formula.
#' @param value [numeric] the value at which the link should be set.
#' @param warnings [logical] should a warning be displayed if the link is not found in the \code{lvm} object.
#' @param ... [internal] only used by the generic method.
#'
#' @examples
#' library(lava)
#' set.seed(10)
#'
#' m <- lvm()
#' regression(m) <- c(y1,y2,y3)~u
#' regression(m) <- u~x1+x2
#' latent(m) <- ~u
#' covariance(m) <- y1 ~ y2
#'
#' m1 <- setLink(m, y3 ~ u, value = 1)
#' estimate(m1, lava::sim(m,1e2))
#' # m1 <- setLink(m, u ~ y3, value = 1)
#'
#' m2 <- setLink(m, y1 ~ y2, value = 0.5)
#' estimate(m2, lava::sim(m,1e2))
#'
#' @concept setter
#' @export
`setLink` <-
function(object, ...) UseMethod("setLink")
## ** method setLink.lvm
#' @rdname setLink
#' @export
setLink.lvm <- function(object, var1, var2, value, warnings = FALSE, ...){
res <- initVarLink(var1, var2)
var1 <- res$var1
var2 <- res$var2
object.coef <- stats::coef(object)
#### set the link
if(is.na(var2)){
intercept(object, stats::as.formula(paste0("~",var1))) <- value
}else if(paste(var1, var2, sep = "~") %in% object.coef){
regression(object, stats::as.formula(paste(var1,var2, sep = "~"))) <- value
}else if(paste(var1,var2, sep = ",") %in% object.coef){
covariance(object, stats::as.formula(paste(var1,var2, sep = "~"))) <- value
}else if(paste(var2,var1, sep = ",") %in% object.coef){
covariance(object, stats::as.formula(paste(var1,var2, sep = "~"))) <- value
}else{
if(warnings){
warning("setLink.lvm: no link was found from var1 to var2, no link is set \n",
"var1: ",var1,"\n",
"var2: ",var2,"\n")
}
}
return(object)
}
|