1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
|
### calcDistMax.R ---
#----------------------------------------------------------------------
## author: Brice Ozenne
## created: jun 21 2017 (16:44)
## Version:
## last-updated: jun 20 2019 (10:28)
## By: Brice Ozenne
## Update #: 630
#----------------------------------------------------------------------
##
### Commentary:
##
### Change Log:
#----------------------------------------------------------------------
##
### Code:
## * documentation
#' @title Adjust the p.values Using the Quantiles of the Max Statistic
#' @description Adjust the p.values using the quantiles of the max statistic.
#' @name calcDistMax
#'
#' @param statistic [numeric vector] the observed Wald statistic.
#' Each statistic correspond to a null hypothesis (i.e. a coefficient) that one wish to test.
#' @param iid [matrix] zero-mean iid decomposition of the coefficient used to compute the statistic.
#' @param df [numeric] the degree of freedom defining the multivariate Student's t distribution.
#' If \code{NULL} the multivariate Gaussian distribution will be used instead.
#' @param iid.previous [matrix, EXPERIMENTAL] zero-mean iid decomposition of previously tested coefficient.
#' @param quantile.compute [logical] should the rejection quantile be computed?
#' @param quantile.previous [numeric, EXPERIMENTAL] rejection quantiles of the previously tested hypotheses. If not \code{NULL} the values should correspond the variable in to the first column(s) of the argument \code{iid.previous}.
#' @param method [character] the method used to compute the p-values.
#' @param alpha [numeric 0-1] the significance cutoff for the p-values.
#' When the p-value is below, the corresponding link will be retained.
#' @param cpus [integer >0] the number of processors to use.
#' If greater than 1, the computation of the p-value relative to each test is performed in parallel.
#' @param cl [cluster] a parallel socket cluster generated by \code{parallel::makeCluster}
#' that has been registered using \code{registerDoParallel}.
#' @param n.sim [integer >0] the number of bootstrap simulations used to compute each p-values.
#' Disregarded when the p-values are computed using numerical integration.
#' @param n.repmax [integer >0] the maximum number of rejection for each bootstrap sample before switching to a new bootstrap sample.
#' Only relevant when conditioning on a previous test.
#' Disregarded when the p-values are computed using numerical integration.
#' @param trace [logical] should the execution of the function be traced?
#'
#' @return A list containing
#' \itemize{
#' \item p.adjust: the adjusted p-values.
#' \item z: the rejection threshold.
#' \item Sigma: the correlation matrix between the test statistic.
#' \item correctedLevel: the alpha level corrected for conditioning on previous tests.
#' }
#'
#' @examples
#' library(mvtnorm)
#'
#' set.seed(10)
#' n <- 100
#' p <- 4
#' link <- letters[1:p]
#' n.sim <- 1e3 # number of bootstrap simulations
#'
#' #### test - not conditional ####
#' X.iid <- rmvnorm(n, mean = rep(0,p), sigma = diag(1,p))
#' colnames(X.iid) <- link
#' statistic <- setNames(1:p,link)
#'
#'
#' r1 <- calcDistMaxIntegral(statistic = statistic, iid = X.iid,
#' trace = FALSE, alpha = 0.05, df = 1e6)
#'
#' r3 <- calcDistMaxBootstrap(statistic = statistic, iid = X.iid,
#' method = "residual",
#' trace = FALSE, alpha = 0.05, n.sim = n.sim)
#'
#' r4 <- calcDistMaxBootstrap(statistic = statistic, iid = X.iid,
#' method = "wild",
#' trace = FALSE, alpha = 0.05, n.sim = n.sim)
#'
#' rbind(integration = c(r1$p.adjust, quantile = r1$z),
#' bootResidual = c(r3$p.adjust, quantile = r3$z),
#' bootWild = c(r4$p.adjust, quantile = r4$z))
#'
#' #### test - conditional ####
#' \dontrun{
#' Z.iid <- rmvnorm(n, mean = rep(0,p+1), sigma = diag(1,p+1))
#' seqQuantile <- qmvnorm(p = 0.95, delta = rep(0,p+1), sigma = diag(1,p+1),
#' tail = "both.tails")$quantile
#'
#' r1c <- calcDistMaxIntegral(statistic = statistic, iid = X.iid,
#' iid.previous = Z.iid, quantile.previous = seqQuantile,
#' trace = FALSE, alpha = 0.05, df = NULL)
#'
#' r3c <- calcDistMaxBootstrap(statistic = statistic, iid = X.iid,
#' iid.previous = Z.iid, quantile.previous = seqQuantile, method = "residual",
#' trace = FALSE, alpha = 0.05, n.sim = n.sim)
#'
#' r4c <- calcDistMaxBootstrap(statistic = statistic, iid = X.iid,
#' iid.previous = Z.iid, quantile.previous = seqQuantile, method = "wild",
#' trace = FALSE, alpha = 0.05, n.sim = n.sim)
#'
#' rbind(integration = c(r1c$p.adjust, quantile = r1c$z),
#' bootResidual = c(r3c$p.adjust, quantile = r3c$z),
#' bootWild = c(r4c$p.adjust, quantile = r4c$z))
#' }
#' @concept modelsearch
#' @concept post-selection inference
## * calcDistMaxIntegral
#' @rdname calcDistMax
#' @export
calcDistMaxIntegral <- function(statistic, iid, df,
iid.previous = NULL, quantile.previous = NULL,
quantile.compute = lava.options()$search.calc.quantile.int,
alpha, cpus = 1, cl = NULL, trace){
## ** normalize arguments
p.iid <- NCOL(iid)
n <- NROW(iid)
conditional <- length(quantile.previous)
if(length(quantile.previous)>1){
stop("Can only condition on one previous step \n")
}
if(is.null(df)){
distribution.statistic <- "gaussian"
}else{
distribution.statistic <- "student"
}
iid.all <- cbind(iid,iid.previous)
index.new <- 1:NCOL(iid)
index.previous <- setdiff(1:NCOL(iid.all),index.new)
p.iid.all <- NCOL(iid.all)
## ** Compute the correlation matrix between the test statistics
# center to be under the null
# scale since we want the distribution of the Wald statistic (i.e. statistic with unit variance)
iid.statistic <- scale(iid.all, center = TRUE, scale = TRUE)
Sigma.statistic <- stats::cov(iid.statistic, use = "pairwise.complete.obs")
out <- list(p.adjust = NULL, z = NULL, Sigma = Sigma.statistic[index.new,index.new,drop=FALSE])
## ** Definition of the functions used to compute the quantiles
warperQ <- function(alpha){
.calcQmaxIntegration(alpha = alpha, p = p.iid,
Sigma = Sigma.statistic[index.new,index.new,drop=FALSE],
df = df, distribution = distribution.statistic)
}
warperP <- function(index){
.calcPmaxIntegration(statistic = statistic[index], p = p.iid,
Sigma = Sigma.statistic[index.new,index.new,drop=FALSE],
df = df, distribution = distribution.statistic)
}
## ** correction for conditioning on the previous steps
if(conditional==TRUE){
out$correctedLevel <- calcType1postSelection(1-alpha, quantile.previous = quantile.previous,
mu = rep(0,p.iid.all), Sigma = Sigma.statistic,
distribution = distribution.statistic,
df = df)
alpha <- 1-out$correctedLevel
}else{
out$correctedLevel <- NA
}
if(quantile.compute){
out$z <- warperQ(alpha)
}else{
out$z <- NA
}
## ** start parallel computation
init.cpus <- (cpus > 1 && is.null(cl))
if(init.cpus){
## define cluster
if(trace>0){
cl <- parallel::makeCluster(cpus, outfile = "")
}else{
cl <- parallel::makeCluster(cpus)
}
## link to foreach
doParallel::registerDoParallel(cl)
}
## ** Computation
if(trace > 0){ cat("Computation of multivariate student probabilities to adjust the p.values \n") }
if(cpus > 1){
## *** parallel computations
if(trace>0){
pb <- utils::txtProgressBar(max = length(index.new), style = 3)
}
## export package
parallel::clusterCall(cl, fun = function(x){
suppressPackageStartupMessages(requireNamespace("mvtnorm", quietly = TRUE))
})
value <- NULL # [:for CRAN check] foreach
out$p.adjust <- foreach::`%dopar%`(
foreach::foreach(value = 1:length(statistic),
.export = c(".calcPmaxIntegration"),
.combine = "list"),
{
if(trace>0){utils::setTxtProgressBar(pb, value)}
return(warperP(index.new[value]))
})
if(trace>0){close(pb)}
}else{
## *** sequential computations
if(trace>0){
out$p.adjust <- pbapply::pblapply(1:length(statistic), function(iStat){ warperP(index.new[iStat]) })
}else{
out$p.adjust <- lapply(1:length(statistic), function(iStat){ warperP(index.new[iStat]) })
}
}
out$error <- stats::setNames(unlist(lapply(out$p.adjust, function(x){attr(x,"error")})), names(statistic))
out$p.adjust <- stats::setNames(unlist(out$p.adjust), names(statistic))
## ** end parallel computation
if(init.cpus){
parallel::stopCluster(cl)
}
## ** export
return(out)
}
## * calcDistMaxBootstrap
#' @rdname calcDistMax
#' @export
calcDistMaxBootstrap <- function(statistic, iid, iid.previous = NULL, quantile.previous = NULL,
method, alpha, cpus = 1, cl = NULL, n.sim, trace, n.repmax = 100){
## ** normalize arguments
n <- NROW(iid)
conditional <- length(quantile.previous)>0
if(length(quantile.previous)>1){
stop("Can only condition on one previous step \n")
}
iid.all <- cbind(iid,iid.previous)
index.new <- 1:NCOL(iid)
index.previous <- setdiff(1:NCOL(iid.all),index.new)
## ** Function used for the simulations
warperBoot <- .bootMaxDist
## ** Compute the correlation matrix between the test statistics
# center to be under the null
# scale since we want the distribution of the Wald statistic (i.e. statistic with unit variance)
iid.statistic <- scale(iid.all, center = TRUE, scale = TRUE)
Sigma.statistic <- stats::cov(iid.statistic, use = "pairwise.complete.obs")
## ** start parallel computation
init.cpus <- (cpus > 1 && is.null(cl))
if(init.cpus){
## define cluster
if(trace>0){
cl <- parallel::makeCluster(cpus, outfile = "")
}else{
cl <- parallel::makeCluster(cpus)
}
## link to foreach
doParallel::registerDoParallel(cl)
}
## ** Computation
if(trace > 0){ cat("Bootsrap simulations to get the 95% quantile of the max statistic: ") }
if(cpus>1){
n.simCpus <- rep(round(n.sim/cpus),cpus)
n.simCpus[1] <- n.sim-sum(n.simCpus[-1])
i <- NULL # [:for CRAN check] foreach
distMax <- foreach::`%dopar%`(
foreach::foreach(i = 1:cpus, .packages = c("MASS"),
.export = "calcDistMax",
.combine = "c"),{
replicate(n.simCpus[i],
warperBoot(iid = iid.all, sigma = Sigma.statistic,
n = n, method = method,
index.new = index.new, index.previous = index.previous,
quantile.previous = quantile.previous, n.repmax = n.repmax))
})
}else{
if(trace>0){
distMax <- pbapply::pbsapply(1:n.sim, warperBoot, method = method,
iid = iid.all, sigma = Sigma.statistic, n = n,
index.new = index.new, index.previous = index.previous,
quantile.previous = quantile.previous, n.repmax = n.repmax)
}else{
distMax <- sapply(1:n.sim, warperBoot, method = method,
iid = iid.all, sigma = Sigma.statistic, n = n,
index.new = index.new, index.previous = index.previous,
quantile.previous = quantile.previous, n.repmax = n.repmax)
}
}
if(trace > 0){ cat("done \n") }
## ** end parallel calculation
if(init.cpus){
parallel::stopCluster(cl)
}
## ** export
out <- list()
out$z <- stats::quantile(distMax, probs = 1-alpha, na.rm = TRUE)
out$p.adjust <- sapply(abs(statistic), function(x){mean(distMax>x,na.rm=TRUE)})
out$Sigma <- Sigma.statistic
out$correctedLevel <- NA
return(out)
}
## * .calcQmaxIntegration: numerical integration to compute the critical threshold
.calcQmaxIntegration <- function(alpha, p, Sigma, df, distribution){
if(distribution == "gaussian"){
if(p==1){
q.alpha <- stats::qnorm(1-alpha, mean = 0, sd = 1)
}else{
q.alpha <- mvtnorm::qmvnorm(1-alpha,
mean = rep(0,p),
corr = Sigma,
tail = "both.tails")$quantile
}
}else if(distribution == "student"){
if(p==1){
q.alpha <- stats::qt(1-alpha, df = df)
}else{
q.alpha <- mvtnorm::qmvt(1-alpha,
delta = rep(0,p),
corr = Sigma,
df = df,
tail = "both.tails")$quantile
}
}
return(q.alpha)
}
## * .calcPmaxIntegration_firstStep: numerical integration to compute the p.values
.calcPmaxIntegration <- function(statistic, p, Sigma, df, distribution){
value <- abs(statistic)
if(!is.na(value)){
if(distribution == "gaussian"){
if(p==1){
out <- stats::pnorm(value, mean = 0, sd = Sigma)-stats::pnorm(-value, mean = 0, sd = Sigma)
attr(out, "error") <- 0
}else{
out <- mvtnorm::pmvnorm(lower = -value, upper = value,
mean = rep(0, p), corr = Sigma)
}
}else if(distribution == "student"){
if(p==1){
out <- stats::pt(value, df = df)-stats::pt(-value, df = df)
attr(out, "error") <- 0
}else{
out <- mvtnorm::pmvt(lower = -value, upper = value,
delta = rep(0, p), corr = Sigma, df = df)
}
}
return(1-out)
}else{
return(NA)
}
}
## * .bootMaxDist: bootstrap simulation
.bootMaxDist <- function(iid, sigma, n, method,
index.new, index.previous, quantile.previous, n.repmax,
...){
iRep <- 0
cv <- FALSE
while(iRep < n.repmax && cv == FALSE){
## ** resample to obtain a new influence function
if(method == "residual"){
iid.sim <- MASS::mvrnorm(n,rep(0,NCOL(sigma)),sigma)
}else if(method == "wild"){
e <- stats::rnorm(n,mean=0,sd=1)
iid.sim <- sapply(1:NCOL(sigma),function(x){e*iid[,x]})
}
if(!is.null(quantile.previous)){
iid.previous <- iid.sim[,index.previous]
test.previous <- apply(iid.previous,2,function(x){sqrt(n)*mean(x)/stats::sd(x)})
max.previous <- max(abs(test.previous))
if(max.previous<quantile.previous){
iRep <- iRep + 1
}else{
iid.sim <- iid.sim[,index.new]
cv <- TRUE
}
}else{
cv <- TRUE
}
}
## ** compute the bootstrap test statistic
if(cv){
Test <- apply(iid.sim,2,function(x){sqrt(n)*mean(x)/stats::sd(x)})
}else{
Test <- NA
}
return(max(abs(Test)))
}
#----------------------------------------------------------------------
### calcDistMax.R ends here
|