File: sCorrect-compare2.R

package info (click to toggle)
r-cran-lavasearch2 2.0.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,832 kB
  • sloc: cpp: 28; sh: 13; makefile: 2
file content (433 lines) | stat: -rw-r--r-- 20,271 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
### compare2.R --- 
##----------------------------------------------------------------------
## Author: Brice Ozenne
## Created: jan 30 2018 (14:33) 
## Version: 
## Last-Updated: jan 23 2024 (10:31) 
##           By: Brice Ozenne
##     Update #: 904
##----------------------------------------------------------------------
## 
### Commentary: 
## 
### Change Log:
##----------------------------------------------------------------------
## 
### Code:

## * Documentation - compare2
#' @title Test Linear Hypotheses With Small Sample Correction
#' @description Test Linear Hypotheses using Wald statistics in a latent variable model.
#' Similar to \code{lava::compare} but with small sample correction.
#' @name compare2
#'
#' @param object a \code{lvmfit} or \code{lvmfit2} object (i.e. output of \code{lava::estimate} or \code{lavaSearch2::estimate2}).
#' @param linfct [matrix or vector of character] the linear hypotheses to be tested. Same as the argument \code{par} of \code{\link{createContrast}}.
#' @param rhs [vector] the right hand side of the linear hypotheses to be tested.
#' @param robust [logical] should the robust standard errors be used instead of the model based standard errors?
#' @param cluster [integer vector] the grouping variable relative to which the observations are iid.
#' @param as.lava [logical] should the output be similar to the one return by \code{lava::compare}?
#' @param F.test [logical] should a joint test be performed?
#' @param conf.level [numeric 0-1] level of the confidence intervals.
#' @param ssc [character] method used to correct the small sample bias of the variance coefficients: no correction (\code{"none"}/\code{FALSE}/\code{NA}),
#' correct the first order bias in the residual variance (\code{"residual"}), or correct the first order bias in the estimated coefficients \code{"cox"}).
#' Only relevant when using a \code{lvmfit} object. 
#' @param df [character] method used to estimate the degree of freedoms of the Wald statistic: Satterthwaite \code{"satterthwaite"}. 
#' Otherwise (\code{"none"}/\code{FALSE}/\code{NA}) the degree of freedoms are set to \code{Inf}.
#' Only relevant when using a \code{lvmfit} object. 
#' @param ... additional argument passed to \code{estimate2} when using a \code{lvmfit} object. 
#'
#' @details The \code{linfct} argument and \code{rhs} specify the set of linear hypotheses to be tested. They can be written:
#' \deqn{
#'   linfct * \theta = rhs
#' }
#' where \eqn{\theta} is the vector of the model coefficients. \cr
#' The \code{par} argument must contain expression(s) involving the model coefficients.
#' For example \code{"beta = 0"} or \code{c("-5*beta + alpha = 3","-alpha")} are valid expressions if alpha and beta belong to the set of model coefficients.
#' A contrast matrix and the right hand side will be generated inside the function. \cr
#' 
#' When directly specified, the contrast matrix must contain as many columns as there are coefficients in the model (mean and variance coefficients).
#' Each hypothesis correspond to a row in the contrast matrix. \cr
#'
#' The rhs vector should contain as many elements as there are row in the contrast matrix. \cr
#' 
#' @seealso \code{\link{createContrast}} to create contrast matrices. \cr
#' \code{\link{estimate2}} to obtain \code{lvmfit2} objects.
#' 
#' @return If \code{as.lava=TRUE} an object of class \code{htest}.
#' Otherwise a \code{data.frame} object.

## * example - compare2
#' @examples
#' #### simulate data ####
#' set.seed(10)
#' mSim <- lvm(Y~0.1*X1+0.2*X2)
#' categorical(mSim, labels = c("a","b","c")) <- ~X1
#' transform(mSim, Id~Y) <- function(x){1:NROW(x)}
#' df.data <- lava::sim(mSim, 1e2)
#'
#' #### with lvm ####
#' m <- lvm(Y~X1+X2)
#' e.lvm <- estimate(m, df.data)
#' 
#' compare2(e.lvm, linfct = c("Y~X1b","Y~X1c","Y~X2"))
#' compare2(e.lvm, linfct = c("Y~X1b","Y~X1c","Y~X2"), robust = TRUE)
#' 
#' @concept inference
#' @keywords smallSampleCorrection
#' @export
`compare2` <-
    function(object, linfct, rhs,
             robust, cluster,
             as.lava, F.test,
             conf.level, ...) UseMethod("compare2")

## * compare2.lvmfit
#' @rdname compare2
#' @export
compare2.lvmfit <- function(object, linfct = NULL, rhs = NULL,
                            robust = FALSE, cluster = NULL,
                            as.lava = TRUE, F.test = TRUE,
                            conf.level = 0.95,
                            ssc = lava.options()$ssc, df = lava.options()$df, ...){

    return(compare(estimate2(object, ssc = ssc, df = df, dVcov.robust = robust, ...),
                    linfct = linfct, rhs = rhs, robust = robust, cluster = cluster, as.lava = as.lava, F.test = F.test, conf.level = conf.level)
           )

}

## * compare2.lvmfit2
#' @rdname compare2
#' @export
compare2.lvmfit2 <- function(object, linfct = NULL, rhs = NULL,
                              robust = FALSE, cluster = NULL,
                              as.lava = TRUE, F.test = TRUE,
                              conf.level = 0.95, ...){
   
    dots <- list(...)
    if(any(names(dots)=="par")){
        stop("Argument \'par\' is no longer used as it has been replaced by \'linfct\'. \n")
    }
    if(length(dots[names(dots) %in% "sep" == FALSE])>0){
        warning("Argument(s) \'",paste(setdiff(names(dots),"sep"),collapse="\' \'"),"\' not used by ",match.call()[1],". \n")
    }
    if(is.null(linfct)){ ## necessary for lava::gof to wo
        object0 <- object
        class(object0) <- setdiff(class(object0),"lvmfit2")
        return(lava::compare(object0))
    }
    if(!is.logical(robust)){ 
        stop("Argument \'robust\' should be TRUE or FALSE \n")
    }
    if(robust==FALSE && !is.null(cluster)){
        stop("Argument \'cluster\' must be NULL when argument \'robust\' is FALSE \n")
    }

    ## ** extract information
    df <- object$sCorrect$df
    
    ## 0-order: param
    param <- coef(object, as.lava = FALSE)
    n.param <- length(param)
    name.param <- names(param)

    ## 1-order: score
    if(robust){
        score <- score(object, cluster = cluster, as.lava = FALSE, indiv = TRUE)
    }else{
        score <- NULL
    }
    
    ## 2-order: variance covariance
    vcov.param <- vcov(object, as.lava = FALSE)
    warn <- attr(vcov.param, "warning")
    attr(vcov.param, "warning") <- NULL
    if(robust){
        rvcov.param <- vcov(object, robust = TRUE, cluster = cluster, as.lava = FALSE)
    }

    ## 3-order: derivative of the variance covariance matrices
    if(df == "satterthwaite"){
        dVcov.param <- object$sCorrect$dVcov.param[names(object$sCorrect$skeleton$originalLink2param),
                                                   names(object$sCorrect$skeleton$originalLink2param),
                                                   names(object$sCorrect$skeleton$originalLink2param),
                                                   drop=FALSE]
        dimnames(dVcov.param) <- list(as.character(object$sCorrect$skeleton$originalLink2param),
                                      as.character(object$sCorrect$skeleton$originalLink2param),
                                      as.character(object$sCorrect$skeleton$originalLink2param))
        keep.param <- dimnames(dVcov.param)[[3]]

        if(robust && (lava.options()$df.robust != 1)){
            if(!is.null(cluster) || is.null(object$sCorrect$dRvcov.param)){
                ## update derivative according to cluster
                hessian <- hessian2(object, cluster = cluster, as.lava = FALSE)
                dRvcov.param <- .dRvcov.param(score = score,
                                              hessian = hessian,
                                              vcov.param = vcov.param,
                                              dVcov.param = dVcov.param,
                                              n.param = n.param,
                                              name.param = name.param)
                                              
            }else{
                dRvcov.param <- object$sCorrect$dRvcov.param[names(object$sCorrect$skeleton$originalLink2param),
                                                             names(object$sCorrect$skeleton$originalLink2param),
                                                             names(object$sCorrect$skeleton$originalLink2param),
                                                             drop=FALSE]
                dimnames(dRvcov.param) <- list(as.character(object$sCorrect$skeleton$originalLink2param),
                                               as.character(object$sCorrect$skeleton$originalLink2param),
                                               as.character(object$sCorrect$skeleton$originalLink2param))
            }
        }
    }

    ## ** normalize linear hypotheses
    if(!is.matrix(linfct)){
        res.C <- createContrast(object, linfct = linfct, rowname.rhs = FALSE, ...)
        if(any(colnames(res.C$contrast)!=name.param) && all(colnames(res.C$contrast) == names(object$sCorrect$skeleton$originalLink2param))){
            colnames(res.C$contrast) <- as.character(object$sCorrect$skeleton$originalLink2param)
        }
        linfct <- res.C$contrast
        if(is.null(rhs)){
            rhs <- res.C$null
        }else{
            if(length(rhs)!=length(res.C$null)){
                stop("Incorrect argument \'rhs\' \n",
                     "Must have length ",length(res.C$null),"\n")
            }
            rhs <- stats::setNames(rhs, names(res.C$null))
        }
        name.hypoShort <- rownames(linfct)
        name.hypo <- paste0(name.hypoShort," = ",rhs)
    }else{
        if(is.null(colnames(linfct))){
            stop("Argument \'linfct\' must have column names \n")
        }
        if(NCOL(linfct) != n.param){
            stop("Argument \'linfct\' should be a matrix with ",n.param," columns \n")
        }
        if(any(colnames(linfct) %in% name.param == FALSE)){
            txt <- setdiff(colnames(linfct), name.param)
            stop("Argument \'linfct\' has incorrect column names \n",
                 "invalid name(s): \"",paste(txt, collapse = "\" \""),"\"\n")
        }
        if(any(name.param %in% colnames(linfct) == FALSE)){
            txt <- setdiff(name.param, colnames(linfct))
            stop("Argument \'linfct\' has incorrect column names \n",
                 "missing name(s): \"",paste(txt, collapse = "\" \""),"\"\n")
        }
        ## reorder columns according to coefficients
        linfct <- linfct[,name.param,drop=FALSE]
        if(F.test && any(abs(svd(linfct)$d)<1e-10)){
            stop("Argument \'linfct\' is singular \n")
        }
        if(is.null(rhs)){
            rhs <- stats::setNames(rep(0,NROW(linfct)),rownames(linfct))
        }else if(length(rhs)!=NROW(linfct)){
            stop("The length of argument \'rhs\' must match the number of rows of argument \'linfct' \n")
        }
        if(is.null(rownames(linfct))){
            rownames(linfct) <- .contrast2name(linfct, null = rhs)
            rhs <- stats::setNames(rhs, rownames(linfct))
        }
        name.hypo <- rownames(linfct)
        name.hypoShort <- sapply(strsplit(name.hypo, split = " = ", fixed = TRUE),"[[",1)
    }

    n.hypo <- length(name.hypo)
    linfct <- linfct[,names(param),drop=FALSE] ## column in contrast may not be in the same order as param

    ## ** Univariate Wald test
    ## coefficient (used for F.test and lava export)
    C.p <- linfct %*% param
    C.p.rhs <- C.p - rhs

    ## variance (used for F.test and lava export)
    if(robust){
        C.vcov.C <- linfct %*% rvcov.param %*% t(linfct)
    }else{
        C.vcov.C <- linfct %*% vcov.param %*% t(linfct)
    }

    ## df
    if(df == "satterthwaite"){
        df.Wald  <- dfSigma(contrast = linfct,
                            score = score,
                            vcov = vcov.param,
                            rvcov = rvcov.param,
                            dVcov = dVcov.param,
                            dRvcov = dRvcov.param,
                            keep.param = keep.param,                            
                            type = if(robust){lava.options()$df.robust}else{1})

        ##
        ## 2 * vcov.param["Y","Y"]^2 / (vcov.param["Y~~Y","Y~~Y"]*dVcov.param["Y","Y","Y~~Y"]^2)
        ## 
    }else{
        df.Wald <- rep(Inf, n.hypo)
    }

    ## ** Multivariate Wald test
    error <- NULL
    if(F.test){
        iC.vcov.C <- try(solve(C.vcov.C), silent = TRUE)
        if(!inherits(iC.vcov.C,"try-error")){
            stat.F <- t(C.p.rhs) %*% iC.vcov.C %*% (C.p.rhs) / n.hypo

            ## df (independent t statistics)
            if(df == "satterthwaite"){
                svd.tempo <- eigen(iC.vcov.C)
                D.svd <- diag(svd.tempo$values, nrow = n.hypo, ncol = n.hypo)
                P.svd <- svd.tempo$vectors
     
                C.anova <- sqrt(D.svd) %*% t(P.svd) %*% linfct

                nu_m  <- dfSigma(contrast = C.anova,
                                 score = score,
                                 vcov = vcov.param,
                                 rvcov = rvcov.param,
                                 dVcov = dVcov.param,
                                 dRvcov = dRvcov.param,
                                 keep.param = keep.param,                            
                                 type = if(robust){lava.options()$df.robust}else{1})
                EQ <- sum(nu_m/(nu_m-2))
                df.F <- 2*EQ / (EQ - n.hypo)
            }else{
                df.F <- Inf
            }
            ## store
            F.res <- c("statistic" = as.numeric(stat.F),
                       "df" = df.F,
                       "p.value" = 1 - stats::pf(stat.F,
                                                 df1 = n.hypo,
                                                 df2 = df.F)
                       )
        }else{
            warning("Unable to invert the variance-covariance matrix after application of the contrasts \n")
            error <- iC.vcov.C
        }
    }

    ## ** export
    if(as.lava == TRUE){
        level.inf <- (1-conf.level)/2
        level.sup <- 1-level.inf

        level.inf.label <- paste0(100*level.inf,"%")
        level.sup.label <- paste0(100*level.sup,"%")

        df.estimate <- matrix(NA, nrow = n.hypo, ncol = 5,
                              dimnames = list(name.hypoShort,c("Estimate", "Std.Err", "df", level.inf.label, level.sup.label)))
        df.estimate[,"Estimate"] <- C.p
        df.estimate[,"Std.Err"] <- sqrt(diag(C.vcov.C))
        df.estimate[,"df"] <- df.Wald
        df.estimate[,level.inf.label] <- df.estimate[,"Estimate"] + stats::qt(level.inf, df = df.estimate[,"df"]) * df.estimate[,"Std.Err"]
        df.estimate[,level.sup.label] <- df.estimate[,"Estimate"] + stats::qt(level.sup, df = df.estimate[,"df"]) * df.estimate[,"Std.Err"]

        dimnames(C.vcov.C) <- list(name.hypoShort,name.hypoShort)
        out <- list(statistic = stats::setNames(F.res["statistic"],"F-statistic"),
                    parameter = stats::setNames(round(F.res["df"],2), paste0("df1 = ",n.hypo,", df2")), ## NOTE: cannot not be change to coefficients because of lava
                    p.value = F.res["p.value"],
                    method = c("- Wald test -", "", "Null Hypothesis:", name.hypo),
                    estimate = df.estimate,
                    vcov = C.vcov.C,
                    coef = stats::setNames(C.p[,1], name.hypoShort),
                    null = stats::setNames(rhs, name.hypoShort),
                    cnames = name.hypo                    
                    )
        if(robust){
            colnames(out$estimate)[2] <- "robust SE"
        }
        rownames(linfct) <- name.hypo
        attr(out, "B") <- linfct
        class(out) <- "htest"
    }else{
        if(length(unique(df.Wald))==1){
            df.Wald <- df.Wald[1]
        }
        out <- list(model = object,
                    linfct = linfct,
                    rhs = unname(rhs),
                    coef = param,
                    vcov = if(robust){rvcov.param}else{vcov.param},
                    df = df.Wald,
                    alternative = "two.sided",
                    type = NULL,
                    robust = robust,
                    ssc = object$sCorrect$ssc$type,
                    global = if(F.test){F.res}else{NULL})
        class(out) <- c("glht2","glht")
    }
    attr(out,"warning") <- warn
    attr(out,"error") <- error
    return(out)

}

## * compare.lvmfit2
#' @rdname compare2
#' @export
compare.lvmfit2 <- compare2.lvmfit2

## * dfSigma
##' @title Degree of Freedom for the Chi-Square Test
##' @description Computation of the degrees of freedom of the chi-squared distribution
##' relative to the model-based variance
##'
##' @param contrast [numeric vector] the linear combination of parameters to test
##' @param score [numeric matrix] the individual score for each parameter.
##' @param vcov [numeric matrix] the model-based variance-covariance matrix of the parameters.
##' @param rvcov [numeric matrix] the robust variance-covariance matrix of the parameters.
##' @param dVcov [numeric array] the first derivative of the model-based variance-covariance matrix of the parameters.
##' @param dRvcov [numeric array] the first derivative of the robust variance-covariance matrix of the parameters.
##' @param keep.param [character vector] the name of the parameters with non-zero first derivative of their variance parameter.
##' @param type [integer] 1 corresponds to the Satterthwaite approximation of the the degrees of freedom applied to the model-based variance,
##' 2 to the Satterthwaite approximation of the the degrees of freedom applied to the robust variance,
##' 3 to the approximation described in (Pan, 2002) section 2 and 3.1.
##'
##' @references
##' Wei Pan and Melanie M. Wall, Small-sample adjustments in using the sandwich variance estiamtor in generalized estimating equations. Statistics in medicine (2002) 21:1429-1441.
##' 
dfSigma <- function(contrast, score, vcov, rvcov, dVcov, dRvcov, keep.param, type){
    if(type==1){
        C.vcov.C <- rowSums(contrast %*% vcov * contrast) ## variance matrix of the linear combination
        C.dVcov.C <- sapply(keep.param, function(x){
            rowSums(contrast %*% dVcov[,,x] * contrast)
        })
        numerator <- 2 *(C.vcov.C)^2
        denom <- rowSums(C.dVcov.C %*% vcov[keep.param,keep.param,drop=FALSE] * C.dVcov.C)
        df <- numerator/denom
    }else if(type==2){
        C.rvcov.C <- rowSums(contrast %*% rvcov * contrast) ## variance matrix of the linear combination
        C.dRvcov.C <- sapply(keep.param, function(x){
            rowSums(contrast %*% dRvcov[,,x] * contrast)
        })
        numerator <- 2 *(C.rvcov.C)^2
        denom <- rowSums(C.dRvcov.C %*% rvcov[keep.param,keep.param,drop=FALSE] * C.dRvcov.C)
        df <- numerator/denom
    }else if(type==3){
        vcov.S <- contrast %*% vcov
        index.var <- diag(matrix(1:NROW(contrast)^2,NROW(contrast),NROW(contrast)))
        
        K <- NROW(score)
        ls.Pi <- lapply(1:K, function(iC){as.double(tcrossprod(score[iC,]))})
        M.Pi <- do.call(rbind,ls.Pi)
        M.Pi_center <- sweep(M.Pi, MARGIN = 2, STATS = colMeans(M.Pi), FUN = "-")
        ## M.Pi_center - M.Pi
        T <- t(M.Pi_center) %*% M.Pi_center / (K*(K-1))
        ## range(var(M.Pi)/K - T)
        eq.3 <- K^2 * (vcov.S %x% vcov.S) %*% T %*%  (vcov.S %x% vcov.S)

        Vs <- (vcov.S %x% vcov.S) %*% Reduce("+",ls.Pi)
        ## range(Vs - as.double(rvcov))
        ## range(Vs[index.var] - diag(rvcov))
        df <- 2*Vs[index.var]^2/sapply(index.var, function(iIndex){eq.3[iIndex,iIndex]})
        
    }
    
    return(stats::setNames(df, rownames(contrast)))
}


##----------------------------------------------------------------------
### compare2.R ends here