1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
|
### compare2.R ---
##----------------------------------------------------------------------
## Author: Brice Ozenne
## Created: jan 30 2018 (14:33)
## Version:
## Last-Updated: jan 23 2024 (10:31)
## By: Brice Ozenne
## Update #: 904
##----------------------------------------------------------------------
##
### Commentary:
##
### Change Log:
##----------------------------------------------------------------------
##
### Code:
## * Documentation - compare2
#' @title Test Linear Hypotheses With Small Sample Correction
#' @description Test Linear Hypotheses using Wald statistics in a latent variable model.
#' Similar to \code{lava::compare} but with small sample correction.
#' @name compare2
#'
#' @param object a \code{lvmfit} or \code{lvmfit2} object (i.e. output of \code{lava::estimate} or \code{lavaSearch2::estimate2}).
#' @param linfct [matrix or vector of character] the linear hypotheses to be tested. Same as the argument \code{par} of \code{\link{createContrast}}.
#' @param rhs [vector] the right hand side of the linear hypotheses to be tested.
#' @param robust [logical] should the robust standard errors be used instead of the model based standard errors?
#' @param cluster [integer vector] the grouping variable relative to which the observations are iid.
#' @param as.lava [logical] should the output be similar to the one return by \code{lava::compare}?
#' @param F.test [logical] should a joint test be performed?
#' @param conf.level [numeric 0-1] level of the confidence intervals.
#' @param ssc [character] method used to correct the small sample bias of the variance coefficients: no correction (\code{"none"}/\code{FALSE}/\code{NA}),
#' correct the first order bias in the residual variance (\code{"residual"}), or correct the first order bias in the estimated coefficients \code{"cox"}).
#' Only relevant when using a \code{lvmfit} object.
#' @param df [character] method used to estimate the degree of freedoms of the Wald statistic: Satterthwaite \code{"satterthwaite"}.
#' Otherwise (\code{"none"}/\code{FALSE}/\code{NA}) the degree of freedoms are set to \code{Inf}.
#' Only relevant when using a \code{lvmfit} object.
#' @param ... additional argument passed to \code{estimate2} when using a \code{lvmfit} object.
#'
#' @details The \code{linfct} argument and \code{rhs} specify the set of linear hypotheses to be tested. They can be written:
#' \deqn{
#' linfct * \theta = rhs
#' }
#' where \eqn{\theta} is the vector of the model coefficients. \cr
#' The \code{par} argument must contain expression(s) involving the model coefficients.
#' For example \code{"beta = 0"} or \code{c("-5*beta + alpha = 3","-alpha")} are valid expressions if alpha and beta belong to the set of model coefficients.
#' A contrast matrix and the right hand side will be generated inside the function. \cr
#'
#' When directly specified, the contrast matrix must contain as many columns as there are coefficients in the model (mean and variance coefficients).
#' Each hypothesis correspond to a row in the contrast matrix. \cr
#'
#' The rhs vector should contain as many elements as there are row in the contrast matrix. \cr
#'
#' @seealso \code{\link{createContrast}} to create contrast matrices. \cr
#' \code{\link{estimate2}} to obtain \code{lvmfit2} objects.
#'
#' @return If \code{as.lava=TRUE} an object of class \code{htest}.
#' Otherwise a \code{data.frame} object.
## * example - compare2
#' @examples
#' #### simulate data ####
#' set.seed(10)
#' mSim <- lvm(Y~0.1*X1+0.2*X2)
#' categorical(mSim, labels = c("a","b","c")) <- ~X1
#' transform(mSim, Id~Y) <- function(x){1:NROW(x)}
#' df.data <- lava::sim(mSim, 1e2)
#'
#' #### with lvm ####
#' m <- lvm(Y~X1+X2)
#' e.lvm <- estimate(m, df.data)
#'
#' compare2(e.lvm, linfct = c("Y~X1b","Y~X1c","Y~X2"))
#' compare2(e.lvm, linfct = c("Y~X1b","Y~X1c","Y~X2"), robust = TRUE)
#'
#' @concept inference
#' @keywords smallSampleCorrection
#' @export
`compare2` <-
function(object, linfct, rhs,
robust, cluster,
as.lava, F.test,
conf.level, ...) UseMethod("compare2")
## * compare2.lvmfit
#' @rdname compare2
#' @export
compare2.lvmfit <- function(object, linfct = NULL, rhs = NULL,
robust = FALSE, cluster = NULL,
as.lava = TRUE, F.test = TRUE,
conf.level = 0.95,
ssc = lava.options()$ssc, df = lava.options()$df, ...){
return(compare(estimate2(object, ssc = ssc, df = df, dVcov.robust = robust, ...),
linfct = linfct, rhs = rhs, robust = robust, cluster = cluster, as.lava = as.lava, F.test = F.test, conf.level = conf.level)
)
}
## * compare2.lvmfit2
#' @rdname compare2
#' @export
compare2.lvmfit2 <- function(object, linfct = NULL, rhs = NULL,
robust = FALSE, cluster = NULL,
as.lava = TRUE, F.test = TRUE,
conf.level = 0.95, ...){
dots <- list(...)
if(any(names(dots)=="par")){
stop("Argument \'par\' is no longer used as it has been replaced by \'linfct\'. \n")
}
if(length(dots[names(dots) %in% "sep" == FALSE])>0){
warning("Argument(s) \'",paste(setdiff(names(dots),"sep"),collapse="\' \'"),"\' not used by ",match.call()[1],". \n")
}
if(is.null(linfct)){ ## necessary for lava::gof to wo
object0 <- object
class(object0) <- setdiff(class(object0),"lvmfit2")
return(lava::compare(object0))
}
if(!is.logical(robust)){
stop("Argument \'robust\' should be TRUE or FALSE \n")
}
if(robust==FALSE && !is.null(cluster)){
stop("Argument \'cluster\' must be NULL when argument \'robust\' is FALSE \n")
}
## ** extract information
df <- object$sCorrect$df
## 0-order: param
param <- coef(object, as.lava = FALSE)
n.param <- length(param)
name.param <- names(param)
## 1-order: score
if(robust){
score <- score(object, cluster = cluster, as.lava = FALSE, indiv = TRUE)
}else{
score <- NULL
}
## 2-order: variance covariance
vcov.param <- vcov(object, as.lava = FALSE)
warn <- attr(vcov.param, "warning")
attr(vcov.param, "warning") <- NULL
if(robust){
rvcov.param <- vcov(object, robust = TRUE, cluster = cluster, as.lava = FALSE)
}
## 3-order: derivative of the variance covariance matrices
if(df == "satterthwaite"){
dVcov.param <- object$sCorrect$dVcov.param[names(object$sCorrect$skeleton$originalLink2param),
names(object$sCorrect$skeleton$originalLink2param),
names(object$sCorrect$skeleton$originalLink2param),
drop=FALSE]
dimnames(dVcov.param) <- list(as.character(object$sCorrect$skeleton$originalLink2param),
as.character(object$sCorrect$skeleton$originalLink2param),
as.character(object$sCorrect$skeleton$originalLink2param))
keep.param <- dimnames(dVcov.param)[[3]]
if(robust && (lava.options()$df.robust != 1)){
if(!is.null(cluster) || is.null(object$sCorrect$dRvcov.param)){
## update derivative according to cluster
hessian <- hessian2(object, cluster = cluster, as.lava = FALSE)
dRvcov.param <- .dRvcov.param(score = score,
hessian = hessian,
vcov.param = vcov.param,
dVcov.param = dVcov.param,
n.param = n.param,
name.param = name.param)
}else{
dRvcov.param <- object$sCorrect$dRvcov.param[names(object$sCorrect$skeleton$originalLink2param),
names(object$sCorrect$skeleton$originalLink2param),
names(object$sCorrect$skeleton$originalLink2param),
drop=FALSE]
dimnames(dRvcov.param) <- list(as.character(object$sCorrect$skeleton$originalLink2param),
as.character(object$sCorrect$skeleton$originalLink2param),
as.character(object$sCorrect$skeleton$originalLink2param))
}
}
}
## ** normalize linear hypotheses
if(!is.matrix(linfct)){
res.C <- createContrast(object, linfct = linfct, rowname.rhs = FALSE, ...)
if(any(colnames(res.C$contrast)!=name.param) && all(colnames(res.C$contrast) == names(object$sCorrect$skeleton$originalLink2param))){
colnames(res.C$contrast) <- as.character(object$sCorrect$skeleton$originalLink2param)
}
linfct <- res.C$contrast
if(is.null(rhs)){
rhs <- res.C$null
}else{
if(length(rhs)!=length(res.C$null)){
stop("Incorrect argument \'rhs\' \n",
"Must have length ",length(res.C$null),"\n")
}
rhs <- stats::setNames(rhs, names(res.C$null))
}
name.hypoShort <- rownames(linfct)
name.hypo <- paste0(name.hypoShort," = ",rhs)
}else{
if(is.null(colnames(linfct))){
stop("Argument \'linfct\' must have column names \n")
}
if(NCOL(linfct) != n.param){
stop("Argument \'linfct\' should be a matrix with ",n.param," columns \n")
}
if(any(colnames(linfct) %in% name.param == FALSE)){
txt <- setdiff(colnames(linfct), name.param)
stop("Argument \'linfct\' has incorrect column names \n",
"invalid name(s): \"",paste(txt, collapse = "\" \""),"\"\n")
}
if(any(name.param %in% colnames(linfct) == FALSE)){
txt <- setdiff(name.param, colnames(linfct))
stop("Argument \'linfct\' has incorrect column names \n",
"missing name(s): \"",paste(txt, collapse = "\" \""),"\"\n")
}
## reorder columns according to coefficients
linfct <- linfct[,name.param,drop=FALSE]
if(F.test && any(abs(svd(linfct)$d)<1e-10)){
stop("Argument \'linfct\' is singular \n")
}
if(is.null(rhs)){
rhs <- stats::setNames(rep(0,NROW(linfct)),rownames(linfct))
}else if(length(rhs)!=NROW(linfct)){
stop("The length of argument \'rhs\' must match the number of rows of argument \'linfct' \n")
}
if(is.null(rownames(linfct))){
rownames(linfct) <- .contrast2name(linfct, null = rhs)
rhs <- stats::setNames(rhs, rownames(linfct))
}
name.hypo <- rownames(linfct)
name.hypoShort <- sapply(strsplit(name.hypo, split = " = ", fixed = TRUE),"[[",1)
}
n.hypo <- length(name.hypo)
linfct <- linfct[,names(param),drop=FALSE] ## column in contrast may not be in the same order as param
## ** Univariate Wald test
## coefficient (used for F.test and lava export)
C.p <- linfct %*% param
C.p.rhs <- C.p - rhs
## variance (used for F.test and lava export)
if(robust){
C.vcov.C <- linfct %*% rvcov.param %*% t(linfct)
}else{
C.vcov.C <- linfct %*% vcov.param %*% t(linfct)
}
## df
if(df == "satterthwaite"){
df.Wald <- dfSigma(contrast = linfct,
score = score,
vcov = vcov.param,
rvcov = rvcov.param,
dVcov = dVcov.param,
dRvcov = dRvcov.param,
keep.param = keep.param,
type = if(robust){lava.options()$df.robust}else{1})
##
## 2 * vcov.param["Y","Y"]^2 / (vcov.param["Y~~Y","Y~~Y"]*dVcov.param["Y","Y","Y~~Y"]^2)
##
}else{
df.Wald <- rep(Inf, n.hypo)
}
## ** Multivariate Wald test
error <- NULL
if(F.test){
iC.vcov.C <- try(solve(C.vcov.C), silent = TRUE)
if(!inherits(iC.vcov.C,"try-error")){
stat.F <- t(C.p.rhs) %*% iC.vcov.C %*% (C.p.rhs) / n.hypo
## df (independent t statistics)
if(df == "satterthwaite"){
svd.tempo <- eigen(iC.vcov.C)
D.svd <- diag(svd.tempo$values, nrow = n.hypo, ncol = n.hypo)
P.svd <- svd.tempo$vectors
C.anova <- sqrt(D.svd) %*% t(P.svd) %*% linfct
nu_m <- dfSigma(contrast = C.anova,
score = score,
vcov = vcov.param,
rvcov = rvcov.param,
dVcov = dVcov.param,
dRvcov = dRvcov.param,
keep.param = keep.param,
type = if(robust){lava.options()$df.robust}else{1})
EQ <- sum(nu_m/(nu_m-2))
df.F <- 2*EQ / (EQ - n.hypo)
}else{
df.F <- Inf
}
## store
F.res <- c("statistic" = as.numeric(stat.F),
"df" = df.F,
"p.value" = 1 - stats::pf(stat.F,
df1 = n.hypo,
df2 = df.F)
)
}else{
warning("Unable to invert the variance-covariance matrix after application of the contrasts \n")
error <- iC.vcov.C
}
}
## ** export
if(as.lava == TRUE){
level.inf <- (1-conf.level)/2
level.sup <- 1-level.inf
level.inf.label <- paste0(100*level.inf,"%")
level.sup.label <- paste0(100*level.sup,"%")
df.estimate <- matrix(NA, nrow = n.hypo, ncol = 5,
dimnames = list(name.hypoShort,c("Estimate", "Std.Err", "df", level.inf.label, level.sup.label)))
df.estimate[,"Estimate"] <- C.p
df.estimate[,"Std.Err"] <- sqrt(diag(C.vcov.C))
df.estimate[,"df"] <- df.Wald
df.estimate[,level.inf.label] <- df.estimate[,"Estimate"] + stats::qt(level.inf, df = df.estimate[,"df"]) * df.estimate[,"Std.Err"]
df.estimate[,level.sup.label] <- df.estimate[,"Estimate"] + stats::qt(level.sup, df = df.estimate[,"df"]) * df.estimate[,"Std.Err"]
dimnames(C.vcov.C) <- list(name.hypoShort,name.hypoShort)
out <- list(statistic = stats::setNames(F.res["statistic"],"F-statistic"),
parameter = stats::setNames(round(F.res["df"],2), paste0("df1 = ",n.hypo,", df2")), ## NOTE: cannot not be change to coefficients because of lava
p.value = F.res["p.value"],
method = c("- Wald test -", "", "Null Hypothesis:", name.hypo),
estimate = df.estimate,
vcov = C.vcov.C,
coef = stats::setNames(C.p[,1], name.hypoShort),
null = stats::setNames(rhs, name.hypoShort),
cnames = name.hypo
)
if(robust){
colnames(out$estimate)[2] <- "robust SE"
}
rownames(linfct) <- name.hypo
attr(out, "B") <- linfct
class(out) <- "htest"
}else{
if(length(unique(df.Wald))==1){
df.Wald <- df.Wald[1]
}
out <- list(model = object,
linfct = linfct,
rhs = unname(rhs),
coef = param,
vcov = if(robust){rvcov.param}else{vcov.param},
df = df.Wald,
alternative = "two.sided",
type = NULL,
robust = robust,
ssc = object$sCorrect$ssc$type,
global = if(F.test){F.res}else{NULL})
class(out) <- c("glht2","glht")
}
attr(out,"warning") <- warn
attr(out,"error") <- error
return(out)
}
## * compare.lvmfit2
#' @rdname compare2
#' @export
compare.lvmfit2 <- compare2.lvmfit2
## * dfSigma
##' @title Degree of Freedom for the Chi-Square Test
##' @description Computation of the degrees of freedom of the chi-squared distribution
##' relative to the model-based variance
##'
##' @param contrast [numeric vector] the linear combination of parameters to test
##' @param score [numeric matrix] the individual score for each parameter.
##' @param vcov [numeric matrix] the model-based variance-covariance matrix of the parameters.
##' @param rvcov [numeric matrix] the robust variance-covariance matrix of the parameters.
##' @param dVcov [numeric array] the first derivative of the model-based variance-covariance matrix of the parameters.
##' @param dRvcov [numeric array] the first derivative of the robust variance-covariance matrix of the parameters.
##' @param keep.param [character vector] the name of the parameters with non-zero first derivative of their variance parameter.
##' @param type [integer] 1 corresponds to the Satterthwaite approximation of the the degrees of freedom applied to the model-based variance,
##' 2 to the Satterthwaite approximation of the the degrees of freedom applied to the robust variance,
##' 3 to the approximation described in (Pan, 2002) section 2 and 3.1.
##'
##' @references
##' Wei Pan and Melanie M. Wall, Small-sample adjustments in using the sandwich variance estiamtor in generalized estimating equations. Statistics in medicine (2002) 21:1429-1441.
##'
dfSigma <- function(contrast, score, vcov, rvcov, dVcov, dRvcov, keep.param, type){
if(type==1){
C.vcov.C <- rowSums(contrast %*% vcov * contrast) ## variance matrix of the linear combination
C.dVcov.C <- sapply(keep.param, function(x){
rowSums(contrast %*% dVcov[,,x] * contrast)
})
numerator <- 2 *(C.vcov.C)^2
denom <- rowSums(C.dVcov.C %*% vcov[keep.param,keep.param,drop=FALSE] * C.dVcov.C)
df <- numerator/denom
}else if(type==2){
C.rvcov.C <- rowSums(contrast %*% rvcov * contrast) ## variance matrix of the linear combination
C.dRvcov.C <- sapply(keep.param, function(x){
rowSums(contrast %*% dRvcov[,,x] * contrast)
})
numerator <- 2 *(C.rvcov.C)^2
denom <- rowSums(C.dRvcov.C %*% rvcov[keep.param,keep.param,drop=FALSE] * C.dRvcov.C)
df <- numerator/denom
}else if(type==3){
vcov.S <- contrast %*% vcov
index.var <- diag(matrix(1:NROW(contrast)^2,NROW(contrast),NROW(contrast)))
K <- NROW(score)
ls.Pi <- lapply(1:K, function(iC){as.double(tcrossprod(score[iC,]))})
M.Pi <- do.call(rbind,ls.Pi)
M.Pi_center <- sweep(M.Pi, MARGIN = 2, STATS = colMeans(M.Pi), FUN = "-")
## M.Pi_center - M.Pi
T <- t(M.Pi_center) %*% M.Pi_center / (K*(K-1))
## range(var(M.Pi)/K - T)
eq.3 <- K^2 * (vcov.S %x% vcov.S) %*% T %*% (vcov.S %x% vcov.S)
Vs <- (vcov.S %x% vcov.S) %*% Reduce("+",ls.Pi)
## range(Vs - as.double(rvcov))
## range(Vs[index.var] - diag(rvcov))
df <- 2*Vs[index.var]^2/sapply(index.var, function(iIndex){eq.3[iIndex,iIndex]})
}
return(stats::setNames(df, rownames(contrast)))
}
##----------------------------------------------------------------------
### compare2.R ends here
|