1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
### effects2.R ---
##----------------------------------------------------------------------
## Author: Brice Ozenne
## Created: mar 4 2019 (10:28)
## Version:
## Last-Updated: jan 23 2024 (10:24)
## By: Brice Ozenne
## Update #: 386
##----------------------------------------------------------------------
##
### Commentary:
##
### Change Log:
##----------------------------------------------------------------------
##
### Code:
## * effects2 (documentation)
#' @title Effects Through Pathways With Small Sample Correction
#' @description Test whether a path in the latent variable model correspond to a null effect.
#' Similar to \code{lava::effects} but with small sample correction (if any).
#' So far it only work for a single path related two variable composed of one or two edges.
#' @name effects2
#'
#' @param object a \code{lvmfit} or \code{lvmfit2} object (i.e. output of \code{lava::estimate} or \code{lavaSearch2::estimate2}).
#' @param linfct [character vector] The path for which the effect should be assessed (e.g. \code{"A~B"}),
#' i.e. the effect of the right variable (B) on the left variable (A).
#' @param robust [logical] should robust standard errors be used instead of the model based standard errors? Should be \code{TRUE} if argument cluster is not \code{NULL}.
#' @param cluster [integer vector] the grouping variable relative to which the observations are iid.
#' @param conf.level [numeric, 0-1] level of the confidence intervals.
#' @param from,to alternative to argument \code{linfct}. See \code{lava::effects}.
#' @param ssc [character] method used to correct the small sample bias of the variance coefficients: no correction (\code{"none"}/\code{FALSE}/\code{NA}),
#' correct the first order bias in the residual variance (\code{"residual"}), or correct the first order bias in the estimated coefficients \code{"cox"}).
#' Only relevant when using a \code{lvmfit} object.
#' @param df [character] method used to estimate the degree of freedoms of the Wald statistic: Satterthwaite \code{"satterthwaite"}.
#' Otherwise (\code{"none"}/\code{FALSE}/\code{NA}) the degree of freedoms are set to \code{Inf}.
#' Only relevant when using a \code{lvmfit} object.
#' @param ... additional argument passed to \code{estimate2} when using a \code{lvmfit} object.
#'
#' @details When argument object is a \code{lvmfit} object, the method first calls \code{estimate2} and then extract the confidence intervals.
#'
#' @return A data.frame with a row per path.
#'
#' @concept inference
#' @keywords smallSampleCorrection
#' @export
`effects2` <-
function(object, linfct, robust, cluster, conf.level, ...) UseMethod("effects2")
## * effects2 (examples)
## TODO
## * effects2.lvmfit
#' @rdname effects2
#' @export
effects2.lvmfit <- function(object, linfct, robust = FALSE, cluster = NULL, conf.level = 0.95, to = NULL, from = NULL, df = lava.options()$df, ssc = lava.options()$ssc, ...){
return(effects2(estimate2(object, ssc = ssc, df = df, dVcov.robust = robust, ...), linfct = linfct, to = to, from = from, robust = robust, cluster = cluster, conf.level = conf.level))
}
## * effects2.lvmfit2
#' @rdname effects2
#' @export
effects2.lvmfit2 <- function(object, linfct, robust = FALSE, cluster = NULL, conf.level = 0.95, to = NULL, from = NULL, ...){
dots <- list(...)
if(length(dots)>0){
warning("Argument(s) \'",paste(names(dots),collapse="\' \'"),"\' not used by ",match.call()[1],". \n")
}
object0 <- object
class(object0) <- setdiff(class(object0),"lvmfit2")
## ** identify path
if(!is.null(to) || !is.null(from)){
n.hypo <- 1
if(!missing(linfct)){
stop("Cannot specify argument \'linfct\' at the same time as argument \'from\' or \'to\'. \n")
}
e.effects <- effects(object0, from = from, to = to)
pathEffect <- stats::setNames(list(stats::setNames(list(e.effects$path), paste0(e.effects["to"],"~",e.effects["from"]))),paste0(e.effects["to"],"~",e.effects["from"]))
type <- "total"
null <- 0
}else{
n.hypo <- length(linfct)
pathEffect <- vector(mode = "list", length = n.hypo)
if(is.null(names(linfct))){
names(pathEffect) <- linfct
}else{
if(any(duplicated(names(linfct)))){
stop("Duplicated names for argument \'linfct\'. \n")
}
names(pathEffect) <- names(linfct)
}
type <- rep(as.character(NA), n.hypo)
null <- rep(as.numeric(NA), n.hypo)
for(iH in 1:n.hypo){
if(grepl("|",linfct[iH], fixed=TRUE)){
type[iH] <- base::trimws(strsplit(linfct[iH],split="|",fixed=TRUE)[[1]][2], which = "both")
type[iH] <- match.arg(type[iH], c("indirect","direct","total"))
linfct[iH] <- strsplit(linfct[iH],split="|",fixed=TRUE)[[1]][1]
}else{
type[iH] <- "total"
}
## extract left and right side of the equation
if(length(grep("=",linfct[iH]))>1){
stop("Each element of argument \'linfct\' should contain at most one \'=\' sign.\n",
"Something like: coef1-2*coef2=0. \n")
}
iContrast <- createContrast(linfct[iH])
if(iContrast$null==0){
iContrast <- createContrast(linfct[iH], rowname.rhs = FALSE)
}
null[iH] <- unname(iContrast$null)
iLHS.hypo_factor <- as.double(iContrast$contrast)
iLHS.hypo_coef <- unname(colnames(iContrast$contrast))
iN.param <- length(iLHS.hypo_coef)
pathEffect[[iH]] <- stats::setNames(vector(mode = "list", length = iN.param), iLHS.hypo_coef)
attr(pathEffect[[iH]], "factor") <- iLHS.hypo_factor
for(iCoef in 1:iN.param){ ## iCoef <- 1
## extract all paths for each coefficient
pathEffect[[iH]][[iCoef]] <- effects(object0, stats::as.formula(iLHS.hypo_coef[[iCoef]]))$path
if(length(pathEffect[[iH]][[iCoef]])==0){
stop("Could not find path relative to coefficient ",iLHS.hypo_coef[[iCoef]]," (linfct=",linfct[iH],"). \n")
}else if(type[iH]=="direct" && any(sapply(pathEffect[[iH]][[iCoef]],length)>2)){
pathEffect[[iH]][[iCoef]] <- pathEffect[[iH]][[iCoef]][sapply(pathEffect[[iH]][[iCoef]],length)==2]
if(length(pathEffect[[iH]][[iCoef]])==0){
stop("Could not find direct path relative to coefficient ",iLHS.hypo_coef[[iCoef]]," (linfct=",linfct[iH],"). \n")
}
}else if(type[iH]=="indirect" && any(sapply(pathEffect[[iH]][[iCoef]],length)>2)){
pathEffect[[iH]][[iCoef]] <- pathEffect[[iH]][[iCoef]][sapply(pathEffect[[iH]][[iCoef]],length)>2]
if(length(pathEffect[[iH]][[iCoef]])==0){
stop("Could not find indirect path relative to coefficient ",iLHS.hypo_coef[[iCoef]]," (linfct=",linfct[iH],"). \n")
}
}
}
}
}
## ** extract information
## 0-order: param
object.param <- coef(object, as.lava = FALSE)
object.paramAll <- coef2(object, type = 9, labels = 1)[,"Estimate"]
name.param <- names(object.param)
n.param <- length(name.param)
## 1-order: score
if(robust){
object.score <- score(object, cluster = cluster, as.lava = FALSE)
}
## 2-order: variance covariance
object.vcov.param <- vcov(object, as.lava = FALSE)
if(robust){
object.rvcov.param <- vcov(object, robust = TRUE, cluster = cluster, as.lava = FALSE)
}
test.df <- (object$sCorrect$df == "satterthwaite")
if(test.df){
object.dVcov.param <- object$sCorrect$dVcov.param
if(robust && (lava.options()$df.robust != 1)){
if(!is.null(cluster)){ ## update derivative according to cluster
object.dRvcov.param <- .dRvcov.param(score = object.score,
hessian = hessian2(object, cluster = cluster),
vcov.param = object.vcov.param,
dVcov.param = object.dVcov.param,
n.param = n.param,
name.param = name.param)
}else{
dRvcov.param <- object$sCorrect$dRvcov.param
}
}
}
coefEffect <- pathEffect
## ** identify coefficients corresponding to path
for(iH in 1:n.hypo){ ## iH <- 1
for(iCoef in 1:iN.param){ ## iCoef <- 1
iN.path <- length(pathEffect[[iH]][[iCoef]])
for(iPath in 1:iN.path){ ## iPath <- 1
coefEffect[[iH]][[iCoef]][[iPath]] <- paste(pathEffect[[iH]][[iCoef]][[iPath]][-1], pathEffect[[iH]][[iCoef]][[iPath]][-length(pathEffect[[iH]][[iCoef]][[iPath]])], sep = lava.options()$symbols[1])
if(any(coefEffect[[iH]][[iCoef]][[iPath]] %in% name.param) == FALSE){
stop("Incorrect path: ",paste(pathEffect[[iH]][[iCoef]][[iPath]], collapse="->"),"\n",
"Could not find coefficient: \"",paste(coefEffect[[iH]][[iCoef]][[iPath]][coefEffect[[iH]][[iCoef]][[iPath]] %in% name.param == FALSE], collapse = "\" \""),"\".\n")
}
}
}
}
## ** point estimate
vec.beta <- stats::setNames(rep(NA, length = n.hypo), names(pathEffect))
for(iH in 1:n.hypo){ ## iH <- 1
iValue.param <- lapply(coefEffect[[iH]], function(iCoef){ ## for each coefficient (e.g. Y~E1 - Y~E2 = 0)
iValue.path <- lapply(iCoef, function(iName){prod(object.paramAll[iName])}) ## get effect through each path corresponding to a coefficient (e.g. Y~E: Y~E and Y~X and X~E, i.e. \beta1 and \beta2*\beta3)
return(do.call("sum", iValue.path)) ## return total effect (e.g. \beta1 + \beta2*\beta3)
})
if(is.null(attr(coefEffect[[iH]],"factor"))){
vec.beta[iH] <- unlist(iValue.param)
}else{
vec.beta[iH] <- sum(attr(coefEffect[[iH]],"factor") * unlist(iValue.param))
}
}
## ** variance
## *** partial derivative
dbeta.dtheta <- matrix(NA, nrow = n.hypo, ncol = n.param, dimnames = list(names(pathEffect), name.param))
for(iH in 1:n.hypo){ ## iH <- 1
iValue.param <- lapply(coefEffect[[iH]], function(iCoef){ ## iCoef <- coefEffect[[iH]][[1]] ## for each coefficient (e.g. Y~E1 - Y~E2 = 0)
iDValue.path <- colSums(do.call(rbind,lapply(iCoef, function(iName){ ## iName <- iCoef[[1]] ## get derivative through each path corresponding to a coefficient (e.g. Y~E: Y~E and Y~X and X~E, i.e. \beta1 and \beta2*\beta3)
iDeriv <- stats::setNames(rep(0, n.param), name.param)
iDeriv[intersect(iName,name.param)] <- prod(object.paramAll[iName])/object.paramAll[intersect(iName,name.param)]
return(iDeriv)
})))
})
if(is.null(attr(coefEffect[[iH]],"factor"))){
dbeta.dtheta[iH,] <- iValue.param[[1]]
}else{
dbeta.dtheta[iH,] <- attr(coefEffect[[iH]],"factor") %*% do.call(rbind,iValue.param)
}
}
if(robust){
Mvcov.beta <- dbeta.dtheta %*% object.rvcov.param %*% t(dbeta.dtheta)
}else{
Mvcov.beta <- dbeta.dtheta %*% object.vcov.param %*% t(dbeta.dtheta)
}
## ** compute df
if(test.df){
vec.df <- dfSigma(contrast = dbeta.dtheta,
score = object.score,
vcov = object.vcov.param,
rvcov = object.rvcov.param,
dVcov = object.dVcov.param,
dRvcov = object.dRvcov.param,
keep.param = dimnames(object.dVcov.param)[[3]],
type = if(robust){lava.options()$df.robust}else{1})
}else{
vec.df <- rep(0, n.hypo)
}
## ** gather everything in glht object
linfct2 <- diag(1, ncol = n.hypo, nrow = n.hypo)
dimnames(linfct2) <- list(names(pathEffect),names(pathEffect))
out <- list(model = object,
linfct = linfct2,
rhs = null,
coef = vec.beta,
vcov = Mvcov.beta,
df = vec.df,
alternative = "two.sided",
type = NULL,
robust = robust,
ssc = object$sCorrect$ssc$type,
grad = dbeta.dtheta,
path = pathEffect,
global = NULL)
class(out) <- c("glht2","glht")
## ** export
return(out)
}
## * effects.lvmfit2
#' @rdname effects2
#' @export
effects.lvmfit2 <- effects2.lvmfit2
######################################################################
### effects2.R ends here
|