1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
### sCorrect-glht2.R ---
##----------------------------------------------------------------------
## Author: Brice Ozenne
## Created: nov 29 2017 (12:56)
## Version:
## Last-Updated: jan 23 2024 (10:25)
## By: Brice Ozenne
## Update #: 811
##----------------------------------------------------------------------
##
### Commentary:
##
### Change Log:
##----------------------------------------------------------------------
## User
### Code:
## * Documentation - glht2
#' @title General Linear Hypothesis Testing With Small Sample Correction
#' @description Test linear hypotheses on coefficients from a latent variable models with small sample corrections.
#' @name glht2
#'
#' @param object,model a \code{lvmfit}, \code{lvmfit2}, or \code{mmm} object.
#' @param linfct [matrix or vector of character] the linear hypotheses to be tested. Same as the argument \code{par} of \code{\link{createContrast}}.
#' @param rhs [vector] the right hand side of the linear hypotheses to be tested.
#' @param robust [logical] should robust standard error be used?
#' Otherwise rescale the influence function with the standard error obtained from the information matrix.
#' @param cluster [integer vector] the grouping variable relative to which the observations are iid.
#' @param ssc [character] method used to correct the small sample bias of the variance coefficients: no correction (\code{"none"}/\code{FALSE}/\code{NA}),
#' correct the first order bias in the residual variance (\code{"residual"}), or correct the first order bias in the estimated coefficients \code{"cox"}).
#' Only relevant when using a \code{lvmfit} object.
#' @param df [character] method used to estimate the degree of freedoms of the Wald statistic: Satterthwaite \code{"satterthwaite"}.
#' Otherwise (\code{"none"}/\code{FALSE}/\code{NA}) the degree of freedoms are set to \code{Inf}.
#' Only relevant when using a \code{lvmfit} object.
#' @param ... [logical] arguments passed to lower level methods.
#'
#' @details
#' Whenever the argument linfct is not a matrix, it is passed to the function \code{createContrast} to generate the contrast matrix and, if not specified, rhs. \cr \cr
#'
#' Since only one degree of freedom can be specify in a glht object and it must be an integer, the degree of freedom of the denominator of an F test simultaneously testing all hypotheses is retained, after rounding. \cr \cr
#'
#' Argument rhs and null are equivalent.
#' This redondance enable compatibility between \code{lava::compare}, \code{compare2}, \code{multcomp::glht}, and \code{glht2}.
#' @return A \code{glht} object.
#'
#' @seealso
#' \code{\link{createContrast}} to create contrast matrices. \cr
#' \code{\link{estimate2}} to pre-compute quantities for the small sample correction.
#'
#' @concept multiple comparisons
#'
#' @examples
#' library(multcomp)
#'
#' ## Simulate data
#' mSim <- lvm(c(Y1,Y2,Y3)~ beta * eta, Z1 ~ E, Z2 ~ E, Age[40:5]~1)
#' latent(mSim) <- "eta"
#' set.seed(10)
#' n <- 1e2
#'
#' df.data <- lava::sim(mSim, n, latent = FALSE, p = c(beta = 1))
#'
#' #### Inference on a single model ####
#' e.lvm <- estimate(lvm(Y1~E), data = df.data)
#' summary(glht2(e.lvm, linfct = c("Y1~E + Y1","Y1")))
#'
#' #### Inference on separate models ####
#' ## fit separate models
#' lvmX <- estimate(lvm(Z1 ~ E), data = df.data)
#' lvmY <- estimate(lvm(Z2 ~ E + Age), data = df.data)
#' lvmZ <- estimate(lvm(c(Y1,Y2,Y3) ~ eta, eta ~ E),
#' data = df.data)
#'
#' #### create mmm object ####
#' e.mmm <- mmm(X = lvmX, Y = lvmY, Z = lvmZ)
#'
#' #### create contrast matrix ####
#' resC <- createContrast(e.mmm, linfct = "E")
#'
#' #### adjust for multiple comparisons ####
#' e.glht2 <- glht2(e.mmm, linfct = c(X="E"), df = FALSE)
#' summary(e.glht2)
#'
#' @concept multiple comparison
#' @export
`glht2` <-
function(object, ...) UseMethod("glht2")
## * glht2.lvmfit
#' @rdname glht2
#' @export
glht2.lvmfit <- function(object, linfct, rhs = NULL, robust = FALSE, cluster = NULL, ssc = lava.options()$ssc, df = lava.options()$df, ...){
return(glht2(estimate2(object, ssc = ssc, df = df, dVcov.robust = robust, ...), linfct = linfct, rhs = rhs, robust = robust, cluster = cluster))
}
## * glht2.lvmfit2
#' @rdname glht2
#' @export
glht2.lvmfit2 <- function(object, linfct, rhs = NULL,
robust = FALSE, cluster = NULL,
...){
out <- compare2(object, linfct = linfct, rhs = rhs,
robust = robust, cluster = cluster,
as.lava = FALSE, F.test = FALSE, ...)
return(out)
}
## * glht2.mmm
#' @rdname glht2
#' @export
glht2.mmm <- function (object, linfct, rhs = 0,
robust = FALSE, cluster = NULL,
...){
## ** check the class of each model
n.object <- length(object)
name.object <- names(object)
if(is.null(name.object)){
stop("Argument \'object\' must be named list. \n")
}
test.lvmfit <- sapply(object, inherits, what = "lvmfit")
if(any(test.lvmfit == 0)){
index.wrong <- which(test.lvmfit == 0)
stop("Argument \'object\' must be a list of objects that inherits from lvmfit. \n",
"Incorrect element(s): ",paste(index.wrong, collapse = " "),".\n")
}
test.lvmfit2 <- sapply(object, inherits, what = "lvmfit2")
if(any(test.lvmfit2 == 0)){
for(iO in which(test.lvmfit2==0)){
object[[iO]] <- estimate2(object[[iO]], dVcov.robust = robust, ...)
}
}
## ** define the contrast matrix
out <- list()
if (is.character(linfct)){
resC <- createContrast(object, linfct = linfct, rowname.rhs = FALSE)
linfct <- resC$contrast
ls.contrast <- resC$mlf
if("rhs" %in% names(match.call()) == FALSE){
rhs <- resC$null
}
}else if(is.matrix(linfct)){
ls.contrast <- lapply(name.object, function(x){ ## x <- name.object[2]
iColnames <- grep(paste0("^",x,": "), colnames(linfct), value = FALSE, fixed = FALSE)
iRownames <- rowSums(linfct[,iColnames]!=0)>0
linfct[iRownames, iColnames,drop=FALSE]
})
names(ls.contrast) <- name.object
contrast <- linfct
if("rhs" %in% names(match.call()) == FALSE){ ## left rhs to default value
rhs <- rep(0, NROW(contrast))
}else if(length(rhs)!=NROW(contrast)){
stop("mismatch between the dimensions of argument \'rhs\' and argument \'contrast\' \n")
}
}else{
stop("Argument \'linfct\' must be a matrix or a vector of characters. \n",
"Consider using out <- createContrast(...) and pass out$contrast to linfct. \n")
}
## ** check whether it is possible to compute df
## i.e. are linear hypothesis model specific?
test.df <- all(unlist(lapply(object, function(iModel){iModel$sCorrect$df == "satterthwaite"})))
if(test.df){
n.hypo <- NROW(linfct)
ls.modelPerTest <- lapply(1:n.hypo, function(iHypo){ ## iHypo <- 1
iContrast <- linfct[iHypo,]
iNames <- names(iContrast)[abs(iContrast)>0]
iModels <- unlist(lapply(strsplit(iNames, split = ":"),"[[",1))
return(length(unique(iModels)))
})
if(any(unlist(ls.modelPerTest)>1)){
stop("Cannot compute the degrees of freedom for tests performed across several models \n",
"Consider setting the argument \'df\' to FALSE \n")
}
}
## ** Total number of observations
if(!is.null(cluster)){
ls.cluster <- lapply(object, function(iO){extractData(iO, rm.na = FALSE)[[cluster]]})
Ucluster <- unique(unlist(ls.cluster))
n.cluster <- length(Ucluster)
}
## ** Extract influence functions from all models
ls.res <- lapply(1:n.object, function(iM){ ## iM <- 1
## *** Pre-compute quantities
if(!inherits(object[[iM]],"lvmfit2")){
object[[iM]] <- estimate2(object[[iM]], ...)
}
out$param <- coef(object[[iM]], as.lava = FALSE)
name.param <- names(out$param)
name.object.param <- paste0(name.object[iM],": ",name.param)
out$param <- stats::setNames(out$param, name.object.param)
## *** Compute df for each test
if(!is.na(object[[iM]]$sCorrect$df)){
## here null does not matter since we only extract the degrees of freedom
iContrast <- ls.contrast[[iM]]
colnames(iContrast) <- name.param
iWald <- compare2(object[[iM]], linfct = iContrast, as.lava = FALSE, F.test = FALSE)
out$df <- iWald$df
}else{
out$df <- Inf
}
## *** get iid decomposition
iid.tempo <- iid(object[[iM]], robust = robust, cluster = cluster, as.lava = FALSE)
if(!is.null(cluster)){
out$iid <- matrix(NA, nrow = n.cluster, ncol = length(name.param),
dimnames = list(Ucluster, name.param))
out$iid[attr(iid.tempo,"cluster"),] <- iid.tempo
}else{
out$iid <- iid.tempo
}
colnames(out$iid) <- name.object.param
## *** get se
if(robust){
out$se <- sqrt(diag(crossprod(iid.tempo)))
}else{
out$se <- sqrt(diag(vcov(object[[iM]], as.lava = FALSE)))
}
return(out)
})
seq.df <- unlist(lapply(ls.res,"[[","df"))
seq.param <- unlist(lapply(ls.res,"[[","param"))
if(test.df){
df.global <- round(stats::median(seq.df), digits = 0)
}else{
df.global <- 0
}
ls.iid <- lapply(ls.res,"[[","iid")
ls.se <- lapply(ls.res,"[[","se")
n.obs <- unique(unlist(lapply(ls.iid, NROW)))
if(length(n.obs)>1){
stop("Mismatch between the number of observations in the iid \n",
"Likely to be due to the presence of missing values \n",
"Consider specifying the \'cluster\' argument \n")
}
M.iid <- do.call(cbind,ls.iid)
diag.se <- diag(do.call(c,ls.se))
if(any(is.na(M.iid))){
M.iid[is.na(M.iid)] <- 0
}
vcov.object <- diag.se %*% stats::cov2cor(crossprod(M.iid)) %*% diag.se ## same as multcomp:::vcov.mmm
dimnames(vcov.object) <- list(colnames(M.iid), colnames(M.iid))
## ** sanity check
name.param <- names(seq.param)
if(!identical(colnames(linfct),name.param)){
stop("Column names of the contrast matrix does not match the one of the coefficients \n")
}
if(!identical(colnames(vcov.object),name.param)){
stop("Column names of the variance covariance matrix does not match the one of the coefficients \n")
}
if(!identical(rownames(vcov.object),name.param)){
stop("Rownames names of the variance covariance matrix does not match the one of the coefficients \n")
}
## ** convert to the appropriate format
out <- list(model = object,
linfct = linfct,
rhs = unname(rhs),
coef = seq.param,
vcov = vcov.object,
df = df.global,
alternative = "two.sided",
type = NULL,
robust = robust)
class(out) <- c("glht2","glht")
### ** export
return(out)
}
## * glht.lvmfit2
#' @rdname glht2
#' @export
glht.lvmfit2 <- function(model, linfct, rhs = NULL,
robust = FALSE, cluster = NULL,
...){
out <- compare2(model, linfct = linfct, rhs = rhs,
robust = robust, cluster = cluster,
as.lava = FALSE, F.test = FALSE, ...)
return(out)
}
## * .calcClosure
.calcClosure <- function(name, estimate, covariance, type, df){
n.hypo <- length(name)
correlation <- stats::cov2cor(covariance)
## ** create all possible hypotheses
ls.closure <- lapply(n.hypo:1, function(iNtest){ ## iNtest <- 1
iList <- list(M = utils::combn(name, m = iNtest))
iList$vec <- apply(iList$M, 2, paste, collapse = ",")
return(iList)
})
## ** compute all p.values
for(iLevel in 1:length(ls.closure)){ ## iLevel <- 1
ls.closure[[iLevel]]$test <- t(apply(ls.closure[[iLevel]]$M, 2, function(iHypo){
index <- which(name %in% iHypo)
if(type == "chisq"){
return(.ChisqTest(estimate[index], covariance = covariance[index,index,drop=FALSE], df = df))
}else if(type == "max"){
return(.tTest(estimate[index],
covariance = covariance[index,index,drop=FALSE],
correlation = correlation[index,index,drop=FALSE], df = df))
}
}))
rownames(ls.closure[[iLevel]]$test) <- ls.closure[[iLevel]]$vec
}
## ** find all hypotheses in the closure related to an individual hypothesis
ls.hypo <- vector(mode = "list", length = n.hypo)
for(iHypo in 1:n.hypo){ ## iHypo <- 1
ls.hypo[[iHypo]] <- do.call(rbind,lapply(ls.closure, function(iClosure){ ## iClosure <- 1
iIndex <- which(colSums(iClosure$M==name[iHypo])>0)
data.frame(hypothesis = iClosure$vec[iIndex],
statistic = as.double(iClosure$test[iIndex,"statistic"]),
p.value = as.double(iClosure$test[iIndex,"p.value"]))
}))
}
names(ls.hypo) <- name
## ** adjusted p.values
vec.p.value <- unlist(lapply(ls.hypo, function(x){max(x$p.value)}))
return(list(closure = ls.closure,
test = ls.hypo,
p.value = vec.p.value))
}
## * .tTest
.tTest <- function(estimate, covariance, correlation, df, ...){
df1 <- length(estimate)
statistic <- max(abs(estimate/sqrt(diag(covariance))))
if(is.null(df)){
distribution <- "gaussian"
}else{
distribution <- "student"
}
p.value <- .calcPmaxIntegration(statistic, p = df1, Sigma = correlation, df = df,
distribution = distribution)
return(c("statistic" = statistic,
"p.value" = p.value))
}
## * .ChisqTest
.ChisqTest <- function(estimate, covariance, df, ...){
df1 <- length(estimate)
## q * statistic ~ chisq or fisher
statistic <- as.double(matrix(estimate, nrow = 1) %*% solve(covariance) %*% matrix(estimate, ncol = 1)) / df1
if(!is.null(df)){
return(c("statistic" = statistic,
"p.value" = 1-stats::pf(statistic, df1 = df1, df2 = df)))
}else{
return(c("statistic" = statistic,
"p.value" = 1-stats::pchisq(statistic, df = df1)))
}
}
|