1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
### sCorrect-information.R ---
##----------------------------------------------------------------------
## Author: Brice Ozenne
## Created: feb 19 2018 (14:17)
## Version:
## Last-Updated: jan 23 2024 (10:25)
## By: Brice Ozenne
## Update #: 446
##----------------------------------------------------------------------
##
### Commentary:
## Compute information, hessian, and first derivative of information
### Change Log:
##----------------------------------------------------------------------
##
### Code:
## * Documentation - information2
#' @title Expected Information With Small Sample Correction.
#' @description Extract the expected information matrix from a latent variable model.
#' Similar to \code{lava::information} but with small sample correction.
#' @name information2
#'
#' @param object,x a \code{lvmfit} or \code{lvmfit2} object (i.e. output of \code{lava::estimate} or \code{lavaSearch2::estimate2}).
#' @param as.lava [logical] if \code{TRUE}, uses the same names as when using \code{stats::coef}.
#' @param ssc [character] method used to correct the small sample bias of the variance coefficients: no correction (\code{"none"}/\code{FALSE}/\code{NA}),
#' correct the first order bias in the residual variance (\code{"residual"}), or correct the first order bias in the estimated coefficients \code{"cox"}).
#' Only relevant when using a \code{lvmfit} object.
#' @param ... additional argument passed to \code{estimate2} when using a \code{lvmfit} object.
#'
#' @details When argument object is a \code{lvmfit} object, the method first calls \code{estimate2} and then extract the information matrix.
#'
#' @seealso \code{\link{estimate2}} to obtain \code{lvmfit2} objects.
#'
#' @return A matrix with as many rows and columns as the number of coefficients.
#'
#' @examples
#' #### simulate data ####
#' n <- 5e1
#' p <- 3
#' X.name <- paste0("X",1:p)
#' link.lvm <- paste0("Y~",X.name)
#' formula.lvm <- as.formula(paste0("Y~",paste0(X.name,collapse="+")))
#'
#' m <- lvm(formula.lvm)
#' distribution(m,~Id) <- Sequence.lvm(0)
#' set.seed(10)
#' d <- lava::sim(m,n)
#'
#' #### linear models ####
#' e.lm <- lm(formula.lvm,data=d)
#'
#' #### latent variable models ####
#' e.lvm <- estimate(lvm(formula.lvm),data=d)
#' information(e.lvm)
#' information2(e.lvm)
#' information2(e.lvm)[1:4,1:4] - solve(vcov(e.lm))
#'
#' @concept extractor
#' @keywords smallSampleCorrection
#' @export
`information2` <-
function(object, as.lava, ssc, ...) UseMethod("information2")
## * information2.lvmfit
#' @rdname information2
#' @export
information2.lvmfit <- function(object, as.lava = TRUE, ssc = lava.options()$ssc, ...){
return(information(estimate2(object, ssc = ssc, ...), as.lava = as.lava))
}
## * information2.lvmfit2
#' @rdname information2
#' @export
information2.lvmfit2 <- function(object, as.lava = TRUE, ...){
dots <- list(...)
if(length(dots)>0){
warning("Argument(s) \'",paste(names(dots),collapse="\' \'"),"\' not used by ",match.call()[1],". \n")
}
out <- object$sCorrect$information[names(object$sCorrect$skeleton$originalLink2param),
names(object$sCorrect$skeleton$originalLink2param),
drop=FALSE]
if(as.lava==FALSE){
dimnames(out) <- list(as.character(object$sCorrect$skeleton$originalLink2param),
as.character(object$sCorrect$skeleton$originalLink2param))
}
return(out)
}
## * information.lvmfit2
#' @rdname information2
#' @export
information.lvmfit2 <- function(x, ...){ ## necessary as first argument of information must be x
information2(x, ...)
}
## * .information2
#' @title Compute the Expected Information Matrix From the Conditional Moments
#' @description Compute the expected information matrix from the conditional moments.
#' @name information2-internal
#'
#' @details \code{calc_information} will perform the computation individually when the
#' argument \code{index.Omega} is not null.
#'
#' @keywords internal
.information2 <- function(dmu, dOmega, OmegaM1,
missing.pattern, unique.pattern, name.pattern,
grid.mean, grid.var, name.param,
leverage, weights = NULL, n.cluster){
if(lava.options()$debug){cat(".information2\n")}
if(is.null(weights)){weights <- rep(1,n.cluster)}
## ** Prepare
n.grid.mean <- NROW(grid.mean)
n.grid.var <- NROW(grid.var)
n.param <- length(name.param)
n.pattern <- length(name.pattern)
Info <- matrix(0, nrow = n.param, ncol = n.param,
dimnames = list(name.param,name.param))
if(length(dmu)>0){
index.mean <- 1:n.grid.mean
}else{
index.mean <- NULL
}
if(length(dOmega)>0){
index.var <- 1:n.grid.var
}else{
index.var <- NULL
}
## ** loop over missing data pattern
for(iP in 1:n.pattern){ ## iP <- 1
iPattern <- name.pattern[iP]
iOmegaM1 <- OmegaM1[[iPattern]]
iIndex <- missing.pattern[[iPattern]]
iY <- which(unique.pattern[iP,]==1)
if(!is.null(leverage)){
iN.corrected <- sum(weights[iIndex]) - colSums(leverage[iIndex,iY,drop=FALSE])
}else{
iN.corrected <- sum(weights[iIndex])
}
## *** Information relative to the mean parameters
for(iG in index.mean){ # iG <- 1
iP1 <- grid.mean[iG,1]
iP2 <- grid.mean[iG,2]
Info[iP1,iP2] <- Info[iP1,iP2] + sum(rowSums(dmu[[iP1]][iIndex,iY,drop=FALSE] %*% iOmegaM1 * dmu[[iP2]][iIndex,iY,drop=FALSE])*weights[iIndex])
}
## *** Information realtive to the variance parameters
for(iG in index.var){ # iG <- 2
iP1 <- grid.var[iG,1]
iP2 <- grid.var[iG,2]
## NOTE: normally tr(ABAC)=tr(ACAB) but because of the factor n.correct this is no more the case
## so the information may slightly dependent on the ordering of the parameters
iDiag <- diag(iOmegaM1 %*% dOmega[[iP1]][iY,iY,drop=FALSE] %*% iOmegaM1 %*% dOmega[[iP2]][iY,iY,drop=FALSE])
Info[iP1,iP2] <- Info[iP1,iP2] + 1/2*sum(iDiag*iN.corrected)
}
}
## ** Make Info a symmetric matrix
Info <- symmetrize(Info, update.upper = NULL)
## ** export
return(Info)
}
|