File: sCorrect-leverage2.R

package info (click to toggle)
r-cran-lavasearch2 2.0.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,832 kB
  • sloc: cpp: 28; sh: 13; makefile: 2
file content (176 lines) | stat: -rw-r--r-- 7,058 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
### leverage2.R --- 
##----------------------------------------------------------------------
## Author: Brice Ozenne
## Created: feb 19 2018 (17:58) 
## Version: 
## Last-Updated: jan 23 2024 (10:25) 
##           By: Brice Ozenne
##     Update #: 178
##----------------------------------------------------------------------
## 
### Commentary: 
## 
### Change Log:
##----------------------------------------------------------------------
## 
### Code:

## * documentation - leverage2
#' @title Leverage With Small Sample Correction.
#' @description Extract leverage values from a latent variable model, with small sample correction. 
#' @name leverage2
#' 
#' @param object a \code{lvmfit} or \code{lvmfit2} object (i.e. output of \code{lava::estimate} or \code{lavaSearch2::estimate2}).
#' @param format [character] Use \code{"wide"} to return the residuals in the wide format (one row relative to each sample).
#' Otherwise use \code{"long"} to return the residuals in the long format.
#' @param ssc [character] method used to correct the small sample bias of the variance coefficients: no correction (\code{"none"}/\code{FALSE}/\code{NA}),
#' correct the first order bias in the residual variance (\code{"residual"}), or correct the first order bias in the estimated coefficients \code{"cox"}).
#' Only relevant when using a \code{lvmfit} object. 
#' @param ... additional argument passed to \code{estimate2} when using a \code{lvmfit} object. 
#'
#' @details The leverage are defined as the partial derivative of the fitted values with respect to the observations.
#' \deqn{
#' leverage_i = \frac{\partial \hat{Y}_i}{\partial Y_i}
#' }
#' See Wei et al. (1998). \cr \cr
#' 
#' When argument object is a \code{lvmfit} object, the method first calls \code{estimate2} and then extract the leverage.
#'
#' @seealso \code{\link{estimate2}} to obtain \code{lvmfit2} objects.
#' 
#' @return a matrix containing the leverage relative to each sample (in rows)
#' and each endogenous variable (in column).
#'
#' @references Bo-Cheng Wei et al., Generalized Leverage and its applications (1998), Scandinavian Journal of Statistics 25:1:25-37.
#' 
#' @examples
#' #### simulate data ####
#' set.seed(10)
#' m <- lvm(Y1~eta,Y2~eta,Y3~eta)
#' latent(m) <- ~eta
#' d <- lava::sim(m,20, latent = FALSE)
#'
#' #### latent variable models ####
#' e.lvm <- estimate(m, data = d)
#' leverage2(e.lvm)
#' 
#' @concept estimator
#' @keywords smallSampleCorrection
#' 
#' @export
`leverage2` <-
    function(object, format, ssc, ...) UseMethod("leverage2")

## * leverage2.lvmfit
#' @rdname leverage2
#' @export
leverage2.lvmfit <- function(object, format = "wide", ssc = lava.options()$ssc, ...){

    return(leverage2(estimate2(object, ssc = ssc, ...), format = format))

}

## * leverage2.lvmfit2
#' @rdname leverage2
#' @export
leverage2.lvmfit2 <- function(object, format = "wide", ...){

    dots <- list(...)
    if(length(dots)>0){
        warning("Argument(s) \'",paste(names(dots),collapse="\' \'"),"\' not used by ",match.call()[1],". \n")
    }

    format <- match.arg(format, choices = c("long","wide"))

    if(format == "wide"){
        return(object$sCorrect$leverage)
    }else if(format == "long"){
        endogenous <- colnames(object$sCorrect$leverage)
        n.endogenous <- length(endogenous)
        
        outW <- data.frame(cluster = 1:NROW(object$sCorrect$leverage), object$sCorrect$leverage)
        outL <- stats::na.omit(stats::reshape(outW,
                                              idvar = "id",
                                              direction = "long",
                                              varying = list(endogenous),
                                              timevar = "endogenous",
                                              v.names = "leverage"))
        rownames(outL) <- NULL

        
        outL$endogenous <- factor(outL$endogenous, levels = 1:n.endogenous, labels = endogenous)
        reorder <- match(interaction(object$sCorrect$old2new.order$XXclusterXX.old,object$sCorrect$old2new.order$XXendogenousXX.old),
                         interaction(outL$cluster,outL$endogenous))
        return(outL[reorder,])
    }

}

## * .leverage2
.leverage2 <- function(Omega, epsilon, dmu, dOmega, vcov.param,
                       name.pattern, missing.pattern, unique.pattern,
                       endogenous, n.endogenous, param, param.mean, param.var, n.cluster){

    n.pattern <- NROW(unique.pattern)
    n.param <- length(param)
    leverage <- matrix(NA, nrow = n.cluster, ncol = n.endogenous,
                       dimnames = list(NULL, endogenous))
    if(length(param.mean)==0){
        leverage[] <- 0
        return(leverage)
    }
    if(is.null(vcov.param)){

        stop("Cannot compute the leverage values without the variance-covariance matrix of the coefficients. \n")

    }

    scoreY <- array(0, dim = c(n.cluster, n.endogenous, n.param),
                    dimnames = list(NULL, endogenous, param))
    
    for(iP in 1:n.pattern){ ## iP <- 1 
        iIndex <- missing.pattern[[iP]]
        iY <- which(unique.pattern[iP,]==1)
        
        iOmega <- Omega[iY,iY,drop=FALSE]
        iOmegaM1 <- chol2inv(chol(iOmega))
        iOmegaM1.epsilon <- epsilon[iIndex,iY,drop=FALSE] %*% iOmegaM1
            
        ## derivative of the score regarding Y
        for(iParam in param){
            
            if(iParam %in% param.mean){
                if(length(iY)>1){
                    scoreY[iIndex,iY,iParam] <- scoreY[iIndex,iY,iParam] + t(dmu[iParam,iY,iIndex]) %*% iOmegaM1 
                }else{
                    scoreY[iIndex,iY,iParam] <- scoreY[iIndex,iY,iParam] + dmu[iParam,iY,iIndex] * iOmegaM1[1,1] 
                }
            }
            if(iParam %in% param.var){
                scoreY[iIndex,iY,iParam] <- scoreY[iIndex,iY,iParam] + 2 * iOmegaM1.epsilon %*% dOmega[[iParam]][iY,iY,drop=FALSE] %*% iOmegaM1
            }

        

        }

        ## leverage
        for(iiY in iY){ ## iiY <- iY[2]
            
            if(length(param.mean)==1){
                leverage[iIndex,iiY] <- dmu[param.mean,iiY,iIndex] * (scoreY[iIndex,iiY,] %*% vcov.param)[,param.mean]
            }else if(n.param==1){
                leverage[iIndex,iiY] <- dmu[param.mean,iiY,iIndex] * vcov.param * scoreY[iIndex,iiY,]
            } else{
                leverage[iIndex,iiY] <- rowSums(t(dmu[param.mean,iiY,iIndex]) * (scoreY[iIndex,iiY,] %*% vcov.param)[,param.mean,drop=FALSE] )
            }
            ## dmu2 <- matrix(0, nrow = n.param, ncol = length(iIndex), dimnames = list(param,NULL))
            ## dmu2[param.mean,] <- dmu[param.mean,iiY,iIndex]
            ## diag( t(dmu2) %*% vcov.param %*% t(scoreY[iIndex,iiY,]) )
        }
    }
    return(leverage)            
}

##----------------------------------------------------------------------
### leverage2.R ends here