1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
### sCorrect-residuals2.R ---
##----------------------------------------------------------------------
## Author: Brice Ozenne
## Created: nov 18 2019 (11:17)
## Version:
## Last-Updated: jan 23 2024 (10:26)
## By: Brice Ozenne
## Update #: 141
##----------------------------------------------------------------------
##
### Commentary:
##
### Change Log:
##----------------------------------------------------------------------
##
### Code:
## * Documentation
#' @title Residuals With Small Sample Correction.
#' @description Extract residuals from a latent variable model.
#' Similar to \code{stats::residuals} but with small sample correction.
#' @name residuals2
#'
#' @param object a \code{lvmfit} or \code{lvmfit2} object (i.e. output of \code{lava::estimate} or \code{lavaSearch2::estimate2}).
#' @param type [character] the type of residual to extract:
#' \code{"response"} for raw residuals,
#' \code{"studentized"} for studentized residuals,
#' \code{"normalized"} for normalized residuals.
#' @param format [character] Use \code{"wide"} to return the residuals in the wide format (one row relative to each sample).
#' Otherwise use \code{"long"} to return the residuals in the long format.
#' @param ssc [character] method used to correct the small sample bias of the variance coefficients: no correction (\code{"none"}/\code{FALSE}/\code{NA}),
#' correct the first order bias in the residual variance (\code{"residual"}), or correct the first order bias in the estimated coefficients \code{"cox"}).
#' Only relevant when using a \code{lvmfit} object.
#' @param ... additional argument passed to \code{estimate2} when using a \code{lvmfit} object.
#'
#' @seealso \code{\link{estimate2}} to obtain \code{lvmfit2} objects.
#'
#' @details When argument object is a \code{lvmfit} object, the method first calls \code{estimate2} and then extract the residuals.
#'
#' The raw residuals are defined by observation minus the fitted value:
#' \deqn{
#' \varepsilon = (Y_1 - \mu_1, ..., Y_m - \mu_m)
#' }
#' The studentized residuals divided the raw residuals relative to each endogenous variable by the modeled variance of the endogenous variable.
#' \deqn{
#' \varepsilon_{stud} =(\frac{Y_1 - \mu_1}{\sigma_1}, ..., \frac{Y_m - \mu_m}{\sigma_m})
#' }
#' The normalized residuals multiply the raw residuals by the inverse of the square root of the modeled residual variance covariance matrix.
#' \deqn{
#' \varepsilon_{norm} = \varepsilon \Omega^{-1/2}
#' }
#' @return a matrix containing the residuals relative to each sample (in rows)
#' and each endogenous variable (in column).
#'
#' @concept extractor
#' @keywords smallSampleCorrection
#' @export
`residuals2` <-
function(object, type, format, ssc, ...) UseMethod("residuals2")
## * Examples
#' @rdname residuals2
#' @examples
#' #### simulate data ####
#' set.seed(10)
#' n <- 101
#'
#' Y1 <- rnorm(n, mean = 0)
#' Y2 <- rnorm(n, mean = 0.3)
#' Id <- findInterval(runif(n), seq(0.1,1,0.1))
#' data.df <- rbind(data.frame(Y=Y1,G="1",Id = Id),
#' data.frame(Y=Y2,G="2",Id = Id)
#' )
#'
#' #### latent variable models ####
#' library(lava)
#' e.lvm <- estimate(lvm(Y ~ G), data = data.df)
#' residuals(e.lvm)
#' residuals2(e.lvm)
#' residuals(e.lvm) - residuals2(e.lvm)
#'
## * residuals2.lvmfit
#' @export
residuals2.lvmfit <- function(object, type = "response", format = "wide", ssc = lava.options()$ssc, ...){
return(residuals(estimate2(object, ssc = ssc, ...), type = type, format = format))
}
## * residuals2.lvmfit2
#' @export
residuals2.lvmfit2 <- function(object, type = "response", format = "wide", ...){
dots <- list(...)
if(length(dots)>0){
warning("Argument(s) \'",paste(names(dots),collapse="\' \'"),"\' not used by ",match.call()[1],". \n")
}
format <- match.arg(format, choices = c("long","wide"))
residuals <- .normalizeResiduals(epsilon = object$sCorrect$residuals,
Omega = object$sCorrect$moment$Omega,
type = type,
missing.pattern = object$sCorrect$missing$pattern,
unique.pattern = object$sCorrect$missing$unique.pattern,
Omega.missing.pattern = object$sCorrect$moment$Omega.missing.pattern)
if(format == "wide"){
return(residuals)
}else if(format == "long"){
endogenous <- colnames(residuals)
n.endogenous <- length(endogenous)
residualsW <- data.frame(1:NROW(residuals), residuals)
names(residualsW) <- c("cluster",endogenous)
residualsL <- stats::na.omit(stats::reshape(residualsW,
idvar = "cluster",
direction = "long",
varying = list(endogenous),
timevar = "endogenous",
v.names = "residual"))
rownames(residualsL) <- NULL
residualsL$endogenous <- factor(residualsL$endogenous, levels = 1:n.endogenous, labels = endogenous)
reorder <- match(interaction(object$sCorrect$old2new.order$XXclusterXX.old, object$sCorrect$old2new.order$XXendogenousXX.old),
interaction(residualsL$cluster,residualsL$endogenous))
return(residualsL[reorder,"residual"])
}
}
## * residuals.lvmfit2
#' @export
residuals.lvmfit2 <- residuals2.lvmfit2
## * .normalizeResiduals
.normalizeResiduals <- function(epsilon, Omega, type,
missing.pattern, unique.pattern, Omega.missing.pattern){
type <- match.arg(type, choices = c("response","studentized","normalized"), several.ok = FALSE)
if(type %in% c("studentized")){
epsilon <- sweep(epsilon,
STATS = sqrt(diag(Omega)),
FUN = "/",
MARGIN = 2)
## object$sCorrect$residuals/epsilon
}else if(type=="normalized"){
name.endogenous <- colnames(epsilon)
if(any(is.na(epsilon))==FALSE){
epsilon <- epsilon %*% matrixPower(Omega, symmetric = TRUE, power = -1/2)
}else{
iOmegaHalf.missing.pattern <- lapply(Omega.missing.pattern,matrixPower,symmetric = TRUE, power = -1/2)
for(iP in names(missing.pattern)){
iY <- which(unique.pattern[iP,]==1)
for(iC in missing.pattern[[iP]]){ ## iC <- 1
epsilon[iC,iY] <- epsilon[iC,iY] %*% iOmegaHalf.missing.pattern[[iP]]
}
}
}
colnames(epsilon) <- name.endogenous
}
return(epsilon)
}
## * .adjustResiduals
.adjustResiduals <- function(epsilon, Psi, Omega,
name.pattern, missing.pattern, unique.pattern,
endogenous, n.endogenous, n.cluster){
if(is.null(Psi)){return(epsilon)}
n.endogenous <- length(endogenous)
epsilon.adj <- matrix(NA, nrow = n.cluster, ncol = n.endogenous,
dimnames = list(NULL, endogenous))
n.pattern <- NROW(unique.pattern)
for(iP in 1:n.pattern){ ## iP <- 1
iIndex <- missing.pattern[[iP]]
iY <- which(unique.pattern[iP,]==1)
iOmega <- Omega[iY,iY,drop=FALSE]
iPsi <- Psi[iY,iY,drop=FALSE]
iOmega.chol <- matrixPower(iOmega, symmetric = TRUE, power = 1/2)
iH <- iOmega %*% iOmega - iOmega.chol %*% iPsi %*% iOmega.chol
iHM1 <- tryCatch(matrixPower(iH, symmetric = TRUE, power = -1/2), warning = function(w){w})
if(inherits(iHM1,"warning")){
stop("Cannot compute the adjusted residuals \n",
"Estimated bias too large compared to the estimated variance-covariance matrix \n",
"Consider setting argument \'adjust.n\' to FALSE when calling sCorrect \n")
}
epsilon.adj[iIndex,iY] <- epsilon[iIndex,iY,drop=FALSE] %*% iOmega.chol %*% iHM1 %*% iOmega.chol
}
return(epsilon.adj)
}
######################################################################
### sCorrect-residuals2.R ends here
|