1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
### score2.R ---
#----------------------------------------------------------------------
## author: Brice Ozenne
## created: okt 12 2017 (16:43)
## Version:
## last-updated: jan 23 2024 (10:26)
## By: Brice Ozenne
## Update #: 2408
#----------------------------------------------------------------------
##
### Commentary:
##
### Change Log:
#----------------------------------------------------------------------
##
### Code:
## * Documentation - score2
#' @title Score With Small Sample Correction
#' @description Extract the (individual) score a the latent variable model.
#' Similar to \code{lava::score} but with small sample correction.
#' @name score2
#'
#' @param object,x a \code{lvmfit} or \code{lvmfit2} object (i.e. output of \code{lava::estimate} or \code{lavaSearch2::estimate2}).
#' @param indiv [logical] If \code{TRUE}, the score relative to each observation is returned. Otherwise the total score is returned.
#' @param cluster [integer vector] the grouping variable relative to which the observations are iid.
#' @param as.lava [logical] if \code{TRUE}, uses the same names as when using \code{stats::coef}.
#' @param ssc [character] method used to correct the small sample bias of the variance coefficients: no correction (\code{"none"}/\code{FALSE}/\code{NA}),
#' correct the first order bias in the residual variance (\code{"residual"}), or correct the first order bias in the estimated coefficients \code{"cox"}).
#' Only relevant when using a \code{lvmfit} object.
#' @param ... additional argument passed to \code{estimate2} when using a \code{lvmfit} object.
#'
#' @details When argument object is a \code{lvmfit} object, the method first calls \code{estimate2} and then extract the confidence intervals.
#'
#' @seealso \code{\link{estimate2}} to obtain \code{lvmfit2} objects.
#'
#' @return When argument indiv is \code{TRUE}, a matrix containing the score relative to each sample (in rows)
#' and each model coefficient (in columns). Otherwise a numeric vector of length the number of model coefficients.
#'
#' @examples
#' #### simulate data ####
#' n <- 5e1
#' p <- 3
#' X.name <- paste0("X",1:p)
#' link.lvm <- paste0("Y~",X.name)
#' formula.lvm <- as.formula(paste0("Y~",paste0(X.name,collapse="+")))
#'
#' m <- lvm(formula.lvm)
#' distribution(m,~Id) <- Sequence.lvm(0)
#' set.seed(10)
#' d <- lava::sim(m,n)
#'
#' #### linear models ####
#' e.lm <- lm(Y~X1+X2+X3, data = d)
#'
#' #### latent variable models ####
#' m.lvm <- lvm(formula.lvm)
#' e.lvm <- estimate(m.lvm,data=d)
#' e2.lvm <- estimate2(m.lvm,data=d)
#' score.tempo <- score(e2.lvm, indiv = TRUE)
#' colSums(score.tempo)
#'
#' @concept extractor
#' @keywords smallSampleCorrection
#' @export
`score2` <-
function(object, indiv, cluster, as.lava, ...) UseMethod("score2")
## * score2.lvmfit
#' @rdname score2
#' @export
score2.lvmfit <- function(object, indiv = FALSE, cluster = NULL, as.lava = TRUE, ssc = lava.options()$ssc, ...){
return(lava::score(estimate2(object, ssc = ssc, ...), indiv = indiv, cluster = cluster, as.lava = as.lava))
}
## * score2.lvmfit2
#' @rdname score2
#' @export
score2.lvmfit2 <- function(object, indiv = FALSE, cluster = NULL, as.lava = TRUE, ...){
dots <- list(...)
if(length(dots)>0){
warning("Argument(s) \'",paste(names(dots),collapse="\' \'"),"\' not used by ",match.call()[1],". \n")
}
## ** define cluster
if(length(cluster) == 1 && (is.numeric(cluster) || is.character(cluster) || is.factor(cluster))){
data <- object$sCorrect$data
if(length(cluster)==1){
if(cluster %in% names(data) == FALSE){
stop("Invalid \'cluster\' argument \n",
"Could not find variable \"",cluster,"\" in argument \'data\' \n")
}
cluster <- data[[cluster]]
}
cluster.index <- as.numeric(factor(cluster, levels = unique(cluster)))
n.cluster <- length(unique(cluster.index))
}else if(is.vector(cluster)){
cluster.index <- as.numeric(factor(cluster, levels = unique(cluster)))
n.cluster <- length(unique(cluster.index))
}else if(is.null(cluster)){ ## NOTE: cluster is a function in the survival package
cluster <- NULL
n.cluster <- object$sCorrect$cluster$n.cluster
cluster.index <- 1:n.cluster
}else{
stop("Do not know how to handle argument cluster of class ",class(cluster),"\n")
}
## ** get score
score <- object$sCorrect$score
if(!is.null(cluster)){ ## aggregate score by cluster
score <- rowsum(score, group = cluster.index, reorder = FALSE)
}
## ** export
score <- score[,names(object$sCorrect$skeleton$originalLink2param),drop=FALSE]
if(as.lava==FALSE){
colnames(score) <- as.character(object$sCorrect$skeleton$originalLink2param)
}
if(!is.null(cluster)){
index2.cluster <- tapply(1:length(cluster),cluster,list)
attr(score,"cluster") <- names(index2.cluster)
}
if(indiv){
return(score)
}else{
return(colSums(score))
}
}
## * score.lvmfit2
#' @rdname score2
#' @export
score.lvmfit2 <- function(x, indiv = FALSE, cluster = NULL, as.lava = TRUE, ...){## necessary as first argument of score must be x
score2(x, indiv = indiv, cluster = cluster, as.lava = as.lava, ...)
}
## * .score2
#' @title Compute the Corrected Score.
#' @description Compute the corrected score.
#' @name score2-internal
#'
#' @param n.cluster [integer >0] the number of observations.
#'
#' @keywords internal
.score2 <- function(dmu, dOmega, epsilon, OmegaM1,
missing.pattern, unique.pattern, name.pattern,
name.param, name.meanparam, name.varparam,
n.cluster, weights){
if(lava.options()$debug){cat(".score2\n")}
## ** Prepare
out.score <- matrix(NA, nrow = n.cluster, ncol = length(name.param),
dimnames = list(NULL,name.param))
n.pattern <- length(name.pattern)
## ** loop over missing data pattern
for(iP in 1:n.pattern){ ## iP <- 1
iPattern <- name.pattern[iP]
iOmegaM1 <- OmegaM1[[iPattern]]
iIndex <- missing.pattern[[iPattern]]
iY <- which(unique.pattern[iP,]==1)
iEpsilon.OmegaM1 <- epsilon[iIndex,iY,drop=FALSE] %*% iOmegaM1
out.score[iIndex,] <- 0 ## initialize (keep NA for missing values)
## *** Compute score relative to the mean coefficients
for(iP in name.meanparam){ # iP <- "Y3~eta"
out.score[iIndex,iP] <- out.score[iIndex,iP] + rowSums(dmu[[iP]][iIndex,iY,drop=FALSE] * iEpsilon.OmegaM1)
}
## *** Compute score relative to the variance-covariance coefficients
for(iP in name.varparam){ # iP <- "eta~~eta"
term2 <- - 1/2 * tr(iOmegaM1 %*% dOmega[[iP]][iY,iY,drop=FALSE])
term3 <- 1/2 * rowSums(iEpsilon.OmegaM1 %*% dOmega[[iP]][iY,iY,drop=FALSE] * iEpsilon.OmegaM1)
out.score[iIndex,iP] <- out.score[iIndex,iP] + as.double(term2) + term3
}
}
## ** export
if(!is.null(weights)){
out.score <- sweep(out.score, STATS = weights, MARGIN = 1, FUN = "*")
}
return(out.score)
}
#----------------------------------------------------------------------
### score2.R ends her
|