File: sCorrect-sscCoxSnell.R

package info (click to toggle)
r-cran-lavasearch2 2.0.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,832 kB
  • sloc: cpp: 28; sh: 13; makefile: 2
file content (329 lines) | stat: -rw-r--r-- 15,774 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
### biasCoxSnell.R --- 
##----------------------------------------------------------------------
## Author: Brice Ozenne
## Created: aug  2 2019 (10:20) 
## Version: 
## Last-Updated: Jan 11 2022 (17:36) 
##           By: Brice Ozenne
##     Update #: 177
##----------------------------------------------------------------------
## 
### Commentary: 
## 
### Change Log:
##----------------------------------------------------------------------
## 
### Code:

## * .init_sscCoxSnell
.init_sscCoxSnell <- function(object,...){
    return(object,...)
}

## * .sscCoxSnell
.sscCoxSnell <- function(object, ssc){
    param <- ssc$param0
    name.param <- names(param)
    
    ## ** compute JJK
    object$sCorrect$skeleton$grid.2varD2.1varD1
    JJK <- .calcJJK(object)

    ## print(range(.old_calcJJK(object)-JJK))
    ## print(sum(.old_calcJJK(object))-sum(JJK))

    ## ** least squares
    Y <- (1/2) * sapply(name.param, function(iP){sum(JJK[,,iP] * object$sCorrect$vcov.param)})
    X <- object$sCorrect$information
    ## information(e.lvm2)

    ## dd <- as.data.frame(cbind(Y = Y,X))
    ## names(dd) <- c("Y",paste0("X",1:9))
    ## e.lm <- lm(Y ~ -1+X1+X2+X3+X4+X5+X6+X7+X8+X9, data = dd)
    
    e.lm <- stats::lm.fit(y = Y, x = X)
    newparam <- param - e.lm$coefficient
    ## print(e.lm$coefficient)
    
    ## ** export
    attr(newparam,"JJK") <- JJK
    attr(newparam,"lm") <- e.lm
    return(newparam)

}


## * .calcJJK
.calcJJK <- function(object){

    ## ** extract information
    dmu <- object$sCorrect$dmoment$dmu
    d2mu <- object$sCorrect$d2moment$d2mu
    dOmega <- object$sCorrect$dmoment$dOmega
    d2Omega <- object$sCorrect$d2moment$d2Omega

    missing.pattern <- object$sCorrect$missing$pattern
    name.pattern <- object$sCorrect$missing$name.pattern
    unique.pattern <- object$sCorrect$missing$unique.pattern
    n.pattern <- length(name.pattern)
    OmegaM1 <- object$sCorrect$moment$OmegaM1.missing.pattern
    
    name.param <- names(object$sCorrect$param)
    n.param <- length(name.param)
    n.cluster <- object$sCorrect$cluster$n.cluster
    
    grid.2meanD1.1varD1 <- object$sCorrect$skeleton$grid.2meanD1.1varD1
    grid.2meanD2.1meanD1 <- object$sCorrect$skeleton$grid.2meanD2.1meanD1
    grid.2varD2.1varD1 <- object$sCorrect$skeleton$grid.2varD2.1varD1
    n.grid.2meanD1.1varD1 <- NROW(grid.2meanD1.1varD1)
    n.grid.2meanD2.1meanD1 <- NROW(grid.2meanD2.1meanD1)
    n.grid.2varD2.1varD1 <- NROW(grid.2varD2.1varD1)

    ## ** prepare output    
    JJK <-  array(0, dim = c(n.param,n.param,n.param),
                  dimnames = list(name.param,name.param,name.param))

    ## ** loop over missing data pattern
    for(iP in 1:n.pattern){ ## iP <- 1
        iPattern <- name.pattern[iP]
        iIndex <- missing.pattern[[iPattern]]
        iY <- which(unique.pattern[iP,]==1)

        iOmegaM1 <- OmegaM1[[iPattern]]
        idmu <- .subsetList(dmu, indexRow = iIndex, indexCol = iY)
        idOmega <- .subsetList(dOmega, indexRow = iY, indexCol = iY)
        id2mu <- .subsetList2(d2mu, indexRow = iIndex, indexCol = iY)
        id2Omega <- .subsetList2(d2Omega, indexRow = iY, indexCol = iY)

        ## *** 1 second derivative and 1 first derivative regarding the variance
        if(n.grid.2varD2.1varD1>0){
            for(iGrid in 1:n.grid.2varD2.1varD1){ # iGrid <- 1
                iName1 <- grid.2varD2.1varD1[iGrid,"X"]
                iName2 <- grid.2varD2.1varD1[iGrid,"Y"]
                iName3 <- grid.2varD2.1varD1[iGrid,"Z"]

                ## term 1
                if(grid.2varD2.1varD1[iGrid,"d2XY"]){
                    d2.Var1 <- grid.2varD2.1varD1[iGrid,"d2XY.Var1"]
                    d2.Var2 <- grid.2varD2.1varD1[iGrid,"d2XY.Var2"]
                    iDiag <- diag(iOmegaM1 %*% id2Omega[[d2.Var1]][[d2.Var2]] %*% iOmegaM1 %*% idOmega[[iName3]])
                    JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] - 1/2 * sum(iDiag * n.cluster)
                    ## cat("a: ",iName1," ",iName2," ",iName3,"\n")
                }

                ## term 2
                if(grid.2varD2.1varD1[iGrid,"d2XZ"]){
                    d2.Var1 <- grid.2varD2.1varD1[iGrid,"d2XZ.Var1"]
                    d2.Var2 <- grid.2varD2.1varD1[iGrid,"d2XZ.Var2"]
                    iDiag <- diag(iOmegaM1 %*% id2Omega[[d2.Var1]][[d2.Var2]] %*% iOmegaM1 %*% idOmega[[iName2]])
                    JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] - 1/2 * sum(iDiag * n.cluster)
                    ## cat("b: ",iName1," ",iName2," ",iName3,"\n")
                }

                ## term 3
                if(grid.2varD2.1varD1[iGrid,"d2YZ"]){
                    d2.Var1 <- grid.2varD2.1varD1[iGrid,"d2YZ.Var1"]
                    d2.Var2 <- grid.2varD2.1varD1[iGrid,"d2YZ.Var2"]
                    iDiag <- diag(iOmegaM1 %*% id2Omega[[d2.Var1]][[d2.Var2]] %*% iOmegaM1 %*% idOmega[[iName1]])
                    JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] + 1/2 * sum(iDiag * n.cluster)
                    ## cat(iGrid,") c: ",iName1," ",iName2," ",iName3," = ", 1/2 * sum(iDiag * n.cluster),"\n")
                }
            }
        }

        ## *** 1 second derivative and 1 first derivative regarding the mean
        if(n.grid.2meanD2.1meanD1>0){
            for(iGrid in 1:n.grid.2meanD2.1meanD1){ # iGrid <- 1
                iName1 <- grid.2meanD2.1meanD1[iGrid,"X"]
                iName2 <- grid.2meanD2.1meanD1[iGrid,"Y"]
                iName3 <- grid.2meanD2.1meanD1[iGrid,"Z"]

                ## term 4
                if(grid.2meanD2.1meanD1[iGrid,"d2XY"]){
                    d2.Var1 <- grid.2meanD2.1meanD1[iGrid,"d2XY.Var1"]
                    d2.Var2 <- grid.2meanD2.1meanD1[iGrid,"d2XY.Var2"]
                    JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] - sum(id2mu[[d2.Var1]][[d2.Var2]] %*% iOmegaM1 * idmu[[iName3]])
                }

                ## term 5
                if(grid.2meanD2.1meanD1[iGrid,"d2XZ"]){
                    d2.Var1 <- grid.2meanD2.1meanD1[iGrid,"d2XZ.Var1"]
                    d2.Var2 <- grid.2meanD2.1meanD1[iGrid,"d2XZ.Var2"]
                    JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] - sum(id2mu[[d2.Var1]][[d2.Var2]] %*% iOmegaM1 * idmu[[iName2]])
                }

                ## term 6
                if(grid.2meanD2.1meanD1[iGrid,"d2YZ"]){
                    d2.Var1 <- grid.2meanD2.1meanD1[iGrid,"d2YZ.Var1"]
                    d2.Var2 <- grid.2meanD2.1meanD1[iGrid,"d2YZ.Var2"]
                    JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] + sum(id2mu[[d2.Var1]][[d2.Var2]] %*% iOmegaM1 * idmu[[iName1]])
                }
            }
        }
        
        ## *** 2 first derivative regarding the mean and one regarding the variance
        if(n.grid.2meanD1.1varD1>0){
            for(iGrid in 1:n.grid.2meanD1.1varD1){ # iGrid <- 1

                ## term 7
                iName1 <- grid.2meanD1.1varD1[iGrid,"Z"]
                iName2 <- grid.2meanD1.1varD1[iGrid,"X"]
                iName3 <- grid.2meanD1.1varD1[iGrid,"Y"]
                value <- sum(idmu[[iName2]] %*% iOmegaM1 %*% idOmega[[iName1]] %*% iOmegaM1 * idmu[[iName3]])
                JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] + value

                ## term 8 
                iName1 <- grid.2meanD1.1varD1[iGrid,"X"]
                iName2 <- grid.2meanD1.1varD1[iGrid,"Z"]
                iName3 <- grid.2meanD1.1varD1[iGrid,"Y"]
                JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] - value
                
                ## term 9
                iName1 <- grid.2meanD1.1varD1[iGrid,"X"]
                iName2 <- grid.2meanD1.1varD1[iGrid,"Y"]
                iName3 <- grid.2meanD1.1varD1[iGrid,"Z"]
                JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] - value
            }
        }
        

    }

    ## sum(abs(JJK)>0)
    return(JJK)
}


## * .old_calcJJK
.old_calcJJK <- function(object){

    ## ** extract information
    dmu <- object$sCorrect$dmoment$dmu
    d2mu <- object$sCorrect$d2moment$d2mu
    dOmega <- object$sCorrect$dmoment$dOmega
    d2Omega <- object$sCorrect$d2moment$d2Omega

    missing.pattern <- object$sCorrect$missing$pattern
    name.pattern <- object$sCorrect$missing$name.pattern
    unique.pattern <- object$sCorrect$missing$unique.pattern
    n.pattern <- length(name.pattern)
    OmegaM1 <- object$sCorrect$moment$OmegaM1.missing.pattern
    
    name.param <- names(object$sCorrect$param)
    n.param <- length(name.param)
    n.cluster <- object$sCorrect$cluster$n.cluster
    
    grid.2meanD1.1varD1 <- object$sCorrect$skeleton$grid.2meanD1.1varD1
    grid.2meanD2.1meanD1 <- object$sCorrect$skeleton$grid.2meanD2.1meanD1
    grid.2varD2.1varD1 <- object$sCorrect$skeleton$grid.2varD2.1varD1
    n.grid.2meanD1.1varD1 <- NROW(grid.2meanD1.1varD1)
    n.grid.2meanD2.1meanD1 <- NROW(grid.2meanD2.1meanD1)
    n.grid.2varD2.1varD1 <- NROW(grid.2varD2.1varD1)

    ## ** prepare output    
    JJK <-  array(0, dim = c(n.param,n.param,n.param),
                  dimnames = list(name.param,name.param,name.param))

    ## ** loop over missing data pattern
    for(iP in 1:n.pattern){ ## iP <- 1
        iPattern <- name.pattern[iP]
        iIndex <- missing.pattern[[iPattern]]
        iY <- which(unique.pattern[iP,]==1)

        iOmegaM1 <- OmegaM1[[iPattern]]
        idmu <- .subsetList(dmu, indexRow = iIndex, indexCol = iY)
        idOmega <- .subsetList(dOmega, indexRow = iY, indexCol = iY)
        id2mu <- .subsetList2(d2mu, indexRow = iIndex, indexCol = iY)
        id2Omega <- .subsetList2(d2Omega, indexRow = iY, indexCol = iY)

        for(iParam1 in 1:n.param){ ## iParam1 <- 1
            for(iParam2 in 1:n.param){ ## iParam2 <- 1
                for(iParam3 in 1:n.param){ ## iParam3 <- 1

                    iName1 <- name.param[iParam1]
                    iName2 <- name.param[iParam2]
                    iName3 <- name.param[iParam3]
                    
                    ## *** 1 second derivative and 1 first derivative regarding the variance

                    ## term 1
                    if(!is.null(idOmega[[iName3]]) && !is.null(id2Omega[[iName1]][[iName2]])){
                        iDiag <- diag(iOmegaM1 %*% id2Omega[[iName1]][[iName2]] %*% iOmegaM1 %*% idOmega[[iName3]])
                        JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] - 1/2 * sum(iDiag * n.cluster)
                    }else if(!is.null(idOmega[[iName3]]) && !is.null(id2Omega[[iName2]][[iName1]])){
                        iDiag <- diag(iOmegaM1 %*% id2Omega[[iName2]][[iName1]] %*% iOmegaM1 %*% idOmega[[iName3]])
                        JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] - 1/2 * sum(iDiag * n.cluster)
                    }

                    ## term 2
                    if(!is.null(idOmega[[iName2]]) && !is.null(id2Omega[[iName1]][[iName3]])){
                        iDiag <- diag(iOmegaM1 %*% id2Omega[[iName1]][[iName3]] %*% iOmegaM1 %*% idOmega[[iName2]])
                        JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] - 1/2 * sum(iDiag * n.cluster)
                    }else if(!is.null(idOmega[[iName2]]) && !is.null(id2Omega[[iName3]][[iName1]])){
                        iDiag <- diag(iOmegaM1 %*% id2Omega[[iName3]][[iName1]] %*% iOmegaM1 %*% idOmega[[iName2]])
                        JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] - 1/2 * sum(iDiag * n.cluster)
                    }

                    ## term 3
                    if(!is.null(idOmega[[iName1]]) && !is.null(id2Omega[[iName2]][[iName3]])){
                        iDiag <- diag(iOmegaM1 %*% id2Omega[[iName2]][[iName3]] %*% iOmegaM1 %*% idOmega[[iName1]])
                        JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] + 1/2 * sum(iDiag * n.cluster)
                        ## cat("c: ",iName1," ",iName2," ",iName3," = ", 1/2 * sum(iDiag * n.cluster),"\n")
                    }else if(!is.null(idOmega[[iName1]]) && !is.null(id2Omega[[iName3]][[iName2]])){
                        iDiag <- diag(iOmegaM1 %*% id2Omega[[iName3]][[iName2]] %*% iOmegaM1 %*% idOmega[[iName1]])
                        JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] + 1/2 * sum(iDiag * n.cluster)
                        ## cat("c: ",iName1," ",iName2," ",iName3," = ", 1/2 * sum(iDiag * n.cluster),"\n")
                    }
        
                    ## *** 1 second derivative and 1 first derivative regarding the mean

                    ## term 4
                    if(!is.null(idmu[[iName3]]) && !is.null(id2mu[[iName1]][[iName2]])){
                        JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] - sum(id2mu[[iName1]][[iName2]] %*% iOmegaM1 * idmu[[iName3]])
                    }else if(!is.null(idmu[[iName3]]) && !is.null(id2mu[[iName2]][[iName1]])){
                        JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] - sum(id2mu[[iName2]][[iName1]] %*% iOmegaM1 * idmu[[iName3]])
                    }

                    ## term 5
                    if(!is.null(idmu[[iName2]]) && !is.null(id2mu[[iName1]][[iName3]])){
                        JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] - sum(id2mu[[iName1]][[iName3]] %*% iOmegaM1 * idmu[[iName2]])
                    }else if(!is.null(idmu[[iName2]]) && !is.null(id2mu[[iName3]][[iName1]])){
                        JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] - sum(id2mu[[iName3]][[iName1]] %*% iOmegaM1 * idmu[[iName2]])
                    }

                    ## term 6
                    if(!is.null(idmu[[iName1]]) && !is.null(id2mu[[iName2]][[iName3]])){
                        JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] + sum(id2mu[[iName2]][[iName3]] %*% iOmegaM1 * idmu[[iName1]])
                    }else if(!is.null(idmu[[iName1]]) && !is.null(id2mu[[iName3]][[iName2]])){
                        JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] + sum(id2mu[[iName3]][[iName2]] %*% iOmegaM1 * idmu[[iName1]])
                    }

                    ## *** 2 first derivative regarding the mean and one regarding the variance

                    ## term 7
                    if(!is.null(idmu[[iName2]]) && !is.null(idOmega[[iName1]]) && !is.null(idmu[[iName3]])){
                        value <- sum(idmu[[iName2]] %*% iOmegaM1 %*% idOmega[[iName1]] %*% iOmegaM1 * idmu[[iName3]])
                        JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] + value
                    }

                    ## term 8 
                    if(!is.null(idmu[[iName1]]) && !is.null(idOmega[[iName2]]) && !is.null(idmu[[iName3]])){
                        value <- sum(idmu[[iName1]] %*% iOmegaM1 %*% idOmega[[iName2]] %*% iOmegaM1 * idmu[[iName3]])
                        JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] - value
                    }
                
                    ## term 9
                    if(!is.null(idmu[[iName2]]) && !is.null(idOmega[[iName3]]) && !is.null(idmu[[iName1]])){
                        value <- sum(idmu[[iName2]] %*% iOmegaM1 %*% idOmega[[iName3]] %*% iOmegaM1 * idmu[[iName1]])
                        JJK[iName1,iName2,iName3] <- JJK[iName1,iName2,iName3] - value
                    }
                }
            }
        }        

    }

    return(JJK)
}
######################################################################
### biasCoxSnell.R ends here