1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
### sCorrect-summary.glht2.R ---
##----------------------------------------------------------------------
## Author: Brice Ozenne
## Created: maj 2 2018 (09:20)
## Version:
## Last-Updated: jan 24 2022 (11:11)
## By: Brice Ozenne
## Update #: 228
##----------------------------------------------------------------------
##
### Commentary:
##
### Change Log:
##----------------------------------------------------------------------
##
### Code:
#' @title Outcome of Linear Hypothesis Testing
#' @description Estimates, p-values, and confidence intevals for linear hypothesis testing, possibly adjusted for multiple comparisons.
#'
#' @param object a \code{glht2} object.
#' @param confint [logical] should confidence intervals be output
#' @param conf.level [numeric 0-1] level of the confidence intervals.
#' @param transform [function] function to backtransform the estimates, standard errors, null hypothesis, and the associated confidence intervals
#' (e.g. \code{exp} if the outcomes have been log-transformed).
#' @param seed [integer] value that will be set before adjustment for multiple comparisons to ensure reproducible results.
#' Can also be \code{NULL}: in such a case no seed is set.
#' @param rowname.rhs [logical] when naming the hypotheses, add the right-hand side (i.e. "X1-X2=0" instead of "X1-X2").
#' @param ... argument passed to \code{multcomp:::summary.glht}, e.g. argument \code{test} to choose the type of adjustment for multiple comparisons.
#'
## * summary.glht2
#' @export
summary.glht2 <- function(object, confint = TRUE, conf.level = 0.95, transform = NULL, seed = NULL, rowname.rhs = TRUE, ...){
if(!is.null(seed)){
old.seed <- get0(".Random.seed", envir = .GlobalEnv, inherits = FALSE)
on.exit( assign(".Random.seed", old.seed, envir = .GlobalEnv, inherits = FALSE) )
set.seed(seed)
}
keep.class <- class(object)
object$test <- NULL
object$confint <- NULL
class(object) <- setdiff(keep.class, "glht2")
keep.df <- object$df
test.df <- any( (keep.df>0) * (!is.infinite(keep.df)) == 1 )
object$df <- round(stats::median(object$df))
output <- summary(object, ...)
## restaure df when possible
method.adjust <- output$test$type
if(NROW(object$linfct)==1){method.adjust <- "none"}
if(test.df && method.adjust %in% c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none","univariate")){
output$df <- keep.df
output$test$pvalues <- stats::p.adjust(2*(1-stats::pt(abs(output$test$tstat), df = keep.df)), method = method.adjust)
}
name.hypo <- rownames(output$linfct)
n.hypo <- length(name.hypo)
if(confint && method.adjust %in% c("univariate","none","bonferroni","single-step")){
if(method.adjust %in% c("none","univariate","bonferroni")){
alpha <- switch(method.adjust,
"none" = 1-conf.level,
"univariate" = 1-conf.level,
"bonferroni" = (1-conf.level)/n.hypo)
if(test.df){
q <- stats::qt(1-alpha/2, df = output$df)
}else{
q <- stats::qnorm(1-alpha/2)
}
output$confint <- data.frame(matrix(NA, ncol = 3, nrow = n.hypo,
dimnames = list(name.hypo, c("Estimate","lwr","upr"))))
output$confint$Estimate <- as.double(output$test$coef)
output$confint$lwr <- as.double(output$test$coef - q * output$test$sigma)
output$confint$upr <- as.double(output$test$coef + q * output$test$sigma)
## range(confint(output, level = 1-alpha, calpha = univariate_calpha())$confint-output$confint)
}else if(method.adjust == "single-step"){
output <- confint(output, level = conf.level, calpha = multcomp::adjusted_calpha())
}else{
output$confint <- matrix(NA, nrow = n.hypo, ncol = 3,
dimnames = list(name.hypo, c("Estimate","lwr","upr")))
}
}
if(rowname.rhs){
table2.rownames <- paste0(name.hypo, " == ", output$rhs)
}else{
table2.rownames <- name.hypo
}
output$table2 <- data.frame(matrix(NA, nrow = n.hypo, ncol = 7,
dimnames = list(table2.rownames,
c("estimate","se","df","lower","upper","statistic","p.value"))
), stringsAsFactors = FALSE)
output$table2$estimate <- output$test$coefficients
output$table2$se <- output$test$sigma
output$table2$df <- output$df
output$table2$df[output$table2$df==0] <- Inf
output$table2$lower <- output$confint[,"lwr"]
output$table2$upper <- output$confint[,"upr"]
output$table2$statistic <- output$test$tstat
output$table2$p.value <- output$test$pvalues
output$seed <- seed
## ** transformation
output$transform <- transform
output$table2 <- transformSummaryTable(output$table2,
transform = transform)
## ** export
class(output) <- append(c("summary.glht2","summary.glht"),keep.class)
return(output)
}
## * print.summary.glht2
#' @export
print.summary.glht2 <- function(x,
digits = max(3L, getOption("digits") - 2L),
digits.p.value = max(3L, getOption("digits") - 2L),
columns = c("estimate","se","df","lower","upper","statistic","p.value"),
...){
columns <- match.arg(columns, choices = c("estimate","se","df","lower","upper","statistic","p.value"), several.ok = TRUE)
type <- x$type
call <- if(isS4(x$model)){x$model@call}else{x$model$call}
alternative <- x$alternativ
type <- x$test$type
txt.type <- switch(type,
"univariate" = "(CIs/p-values not adjusted for multiple comparisons)",
"none" = "(CIs/p-values not adjusted for multiple comparisons)",
"single-step" = paste0("(CIs/p-values adjusted for multiple comparisons -- single step max-test)"),
"free" = paste0("(CIs/p-values adjusted for multiple comparisons -- step down max-test)"),
"Westfall" = paste0("(CIs/p-values adjusted for multiple comparisons -- step down max-test with logical restrictions)"),
paste0("(CIs/p-values adjusted for multiple comparisons -- ", type, " method)")
)
txt.robust <- switch(as.character(x$robust),
"TRUE" = "Robust",
"FALSE" = "Model-based"
)
## txt.correction <- switch(as.character(x$ssc),
## "Cox" = " corrected for small sample bias (Cox correction)",
## "residuals" = " corrected for small sample bias (residual correction)",
## "NA" = ""
## )
txt.alternative <- switch(alternative,
"less" = "one sided tests - inferiority",
"greater" = "one sided tests - superiority",
"two.sided" = "two sided tests")
## display
cat("\n\t", "Simultaneous Tests for General Linear Hypotheses\n\n")
if (!is.null(type)) {
cat("Multiple Comparisons of Means (",txt.alternative,") \n\n", sep = "")
}
if (!is.null(call)) {
cat("Fit: ")
print(call)
cat("Standard errors: ",txt.robust,"\n",sep="")
cat("\n")
}
cat("Linear Hypotheses:\n")
stats::printCoefmat(x$table2[,columns[columns %in% names(x$table2)],drop=FALSE], digits = digits,
has.Pvalue = "p.value" %in% columns,
P.values = "p.value" %in% columns,
eps.Pvalue = 10^{-digits.p.value})
if(NROW(x$table2)>1){
cat(txt.type,"\n")
}
error <- attr(x$test$pvalues,"error")
if(!is.null(error) && error > 1e-12 && "p.value" %in% columns){
txt.error <- paste0("Error when computing the adjusted p-value by numerical integration: ", signif(error, digits = digits))
if(!is.null(x$seed)){
txt.error <- paste0(txt.error," (seed ",x$seed,")")
}
cat(txt.error,"\n")
}
if(!is.null(x$global)){
cat("\nGlobal test: p.value=",format.pval(x$global["p.value"], digits = digits, eps = 10^(-digits.p.value)),
" (statistic=",round(x$global["statistic"], digits = digits),
", df=",round(x$global["df"], digits = digits),")\n",sep="")
}
## if(nchar(txt.correction)>0){cat("(",txt.correction,")\n",sep="")}
cat("\n")
return(invisible(x))
}
######################################################################
### sCorrect-summary.glht2.R ends here
|