1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
### summary.calibrateType1.R ---
##----------------------------------------------------------------------
## Author: Brice Ozenne
## Created: apr 23 2018 (12:58)
## Version:
## Last-Updated: Jan 11 2022 (16:48)
## By: Brice Ozenne
## Update #: 72
##----------------------------------------------------------------------
##
### Commentary:
##
### Change Log:
##----------------------------------------------------------------------
##
### Code:
## * method summary.modelsearch2
#' @title Display the Type 1 Error Rate
#' @description Display the type 1 error rate from the simulation results.
#'
#' @param object output of the \code{calibrateType1} function.
#' @param alpha [numeric, 0-1] the confidence levels.
#' @param robust [character] should the results be displayed for both model-based and robust standard errors (\code{TRUE}),
#' only model-based standard error (\code{FALSE}), or only robust standard error (\code{"only"})?
#' @param type [character] should the type 1 error rate be diplayed (\code{"type1error"}) or the bias (\code{"bias")}.
#' @param digits [integer >0] the number of decimal places to use when displaying the summary.
#' @param log.transform [logical] should the confidence intervals be computed on the logit scale.
#' @param print should the summary be printed in the terminal.
#' @param ... [internal] only used by the generic method.
#'
#' @method summary calibrateType1
#' @export
summary.calibrateType1 <- function(object, robust = FALSE, type = "type1error",
alpha = 0.05, log.transform = TRUE,
digits = 5, print = TRUE, ...){
type <- match.arg(type, c("type1error","bias"))
if(is.logical(robust)){robust <- as.character(robust)}
robust <- match.arg(robust, c("TRUE","FALSE","only"))
## ** compute bias
if(type == "bias"){
stop("not implemented yet!")
}
## ** compute type 1 error
if(type == "type1error"){
dfLong <- melt(object$p.value,
measure.vars = grep("^p.",names(object$p.value),value = TRUE),
value.name = "p.value",
variable.name = "method")
dfS <- stats::aggregate(dfLong$p.value,
by = list(n = dfLong$n, method = dfLong$method, link = dfLong$link),
FUN = function(x){c(n.rep = length(x), type1error = mean(x<=alpha, na.rm = TRUE))},
simplify = FALSE)
dfS <- cbind(dfS[,c("n","method","link")],
do.call(rbind,dfS[,"x"]))
## binom::binom.confint(x = round(dfS$type1error*dfS$n.rep), dfS$n.rep, method = "logit")
logit.p <- log(dfS$type1error/(1-dfS$type1error))
if(log.transform){
## delta method: ln(x/(1-x))' = ln(x)' - ln(1-x)' = 1/x + 1/(1-x) = 1/(x(1-x))
var.logit.p <- 1/(dfS$n.rep*dfS$type1error*(1-dfS$type1error))
## on logit scale
dfS$ci.inf <- logit.p + stats::qnorm(0.025) * sqrt(var.logit.p)
dfS$ci.sup <- logit.p + stats::qnorm(0.975) * sqrt(var.logit.p)
## on original scale
dfS$ci.inf <- 1/(1+exp(-dfS$ci.inf))
dfS$ci.sup <- 1/(1+exp(-dfS$ci.sup))
}else{
dfS$ci.inf <- dfS$type1error + stats::qnorm(0.025) * sqrt(dfS$type1error*(1-dfS$type1error)/dfS$n.rep)
dfS$ci.sup <- dfS$type1error + stats::qnorm(0.975) * sqrt(dfS$type1error*(1-dfS$type1error)/dfS$n.rep)
}
## names
rownames(dfS) <- NULL
dfS$correction <- sapply(as.character(dfS$method),switch,
p.Ztest = "Gaussian approx.",
p.Satt = "Satterthwaite approx.",
p.SSC = "small sample correction",
p.KR = "Satterthwaite approx. with small sample correction",
p.robustZtest = "Gaussian approx.",
p.robustSatt = "Satterthwaite approx.",
p.robustSSC = "small sample correction",
p.robustKR = "Satterthwaite approx. with small sample correction")
dfS$statistic <- sapply(as.character(dfS$method),switch,
p.Ztest = "Wald",
p.Satt = "Wald",
p.SSC = "Wald",
p.KR = "Wald",
p.robustZtest = "robust Wald",
p.robustSatt = "robust Wald",
p.robustSSC = "robust Wald",
p.robustKR = "robust Wald")
## display
if(print){
seqN <- unique(dfS$n)
seqRep <- stats::setNames(dfS$n.rep[duplicated(dfS$n) == FALSE],seqN)
vecTrans <- c("Gaus" = "Gaussian approx.",
"Satt" = "Satterthwaite approx.",
"SSC" = "small sample correction",
"SSC + Satt" = "Satterthwaite approx. with small sample correction")
ls.print <- lapply(seqN, function(iN){ # iN <- 73
df.tempo <- dfS[dfS$n==iN, c("link","statistic","correction","type1error","ci.inf","ci.sup")]
if(!is.null(digits)){
df.tempo$type1error <- round(df.tempo$type1error, digits = digits)
df.tempo$ci.inf <- round(df.tempo$ci.inf, digits = digits)
df.tempo$ci.sup <- round(df.tempo$ci.sup, digits = digits)
}
df.tempo$CI <- paste0("[",df.tempo$ci.inf," ; ",df.tempo$ci.sup,"]")
df.tempo$ci.inf <- NULL
df.tempo$ci.sup <- NULL
if(robust == "FALSE"){
df.tempo <- df.tempo[df.tempo$statistic=="Wald",,drop=FALSE]
}else if(robust == "only"){
df.tempo <- df.tempo[df.tempo$statistic=="robust Wald",,drop=FALSE]
}
df.tempo <- df.tempo[order(df.tempo$link,df.tempo$statistic),,drop=FALSE]
df.tempo$statistic[duplicated(cbind(df.tempo$link,df.tempo$statistic))] <- ""
df.tempo$link[duplicated(df.tempo$link)] <- ""
rownames(df.tempo) <- NULL
df.tempo$correction <- factor(df.tempo$correction,
levels = as.character(vecTrans),
labels = names(vecTrans))
## df.tempo$correction <- NULL
return(df.tempo)
})
names(ls.print) <- as.character(seqN)
cat("Estimated type 1 error rate [95% confidence interval] \n")
lapply(seqN, function(iN){
cat(" > sample size: ",iN," | number of simulations: ",seqRep[as.character(iN)],"\n",sep="")
print(ls.print[[as.character(iN)]],row.names = FALSE)
})
cat("\n")
cat("Corrections: Gaus = Gaussian approximation \n",
" SSC = small sample correction \n",
" Satt = Satterthwaite approximation \n",sep="")
}
}
return(invisible(dfS))
}
######################################################################
### summary.calibrateType1.R ends here
|