1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
|
#+TITLE: Overview of the functionalities of the package lavaSearch2
#+Author: Brice Ozenne
#+LaTeX_HEADER: %\VignetteIndexEntry{overview}
#+LaTeX_HEADER: %\VignetteEngine{R.rsp::tex}
#+LaTeX_HEADER: %\VignetteKeyword{R}
#+BEGIN_SRC R :exports none :results output :session *R* :cache no
options(width = 90)
#+END_SRC
#+RESULTS:
Load *lavaSearch2* in the R session:
#+BEGIN_SRC R :exports code :results silent :session *R* :cache no
library(lavaSearch2)
#+END_SRC
* Inference
** Introductory example
You may have noticed that for simple linear regression, the p-values
of the Wald tests from =lm=:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
## simulate data
mSim <- lvm(Y[1:1]~0.3*X1+0.2*X2)
set.seed(10)
df.data <- sim(mSim, 2e1)
## fit linear model
summary(lm(Y~X1+X2, data = df.data))$coef
#+END_SRC
#+RESULTS:
: Estimate Std. Error t value Pr(>|t|)
: (Intercept) 0.7967775 0.2506767 3.1785069 0.005495832
: X1 0.1550938 0.2205080 0.7033477 0.491360483
: X2 0.4581556 0.2196785 2.0855736 0.052401103
differ from those obtained with the corresponding latent variable
model estimated by maximum likelihood:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
## fit latent variable model
m <- lvm(Y~X1+X2)
e <- estimate(m, data = df.data)
## extract Wald tests
summary(e)$coef
#+END_SRC
#+RESULTS:
: Estimate Std. Error Z-value P-value
: Y~X1 0.1550938 0.2032984 0.7628877 0.4455303456
: Y~X2 0.4581556 0.2025335 2.2621221 0.0236898575
: Y~~Y 0.5557910 0.1757566 3.1622777 NA
: Y 0.7967775 0.2311125 3.4475747 0.0005656439
For instance, the p-value for the effect of X2 is 0.024 in the latent
variable model and 0.052 in the linear regression. The discrepancy is
due to 2 corrections that =lm= applies in order to improve the control
of the type 1 error of the Wald tests:
- use of a Student \(t\)-distribution instead of a Gaussian
distribution (informally using a t-value instead of z-value).
- use of an unbiased estimator of the residuals variance instead of
the ML-estimator. *lavaSearch2* attempts to generalize these
corrections to models with correlated and heteroschedastic
measurements. In the case of a simple linear regression, Wald tests
obtained with *lavaSearch2* match almost exactly those of =lm=:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
summary2(e)$coef
#+END_SRC
#+RESULTS:
: estimate se statistic df p.value
: Y 0.7967775 0.2506766 3.1785073 17.00 0.005495827
: Y~X1 0.1550938 0.2205080 0.7033478 17.00 0.491360428
: Y~X2 0.4581556 0.2196784 2.0855738 17.00 0.052401076
: Y~~Y 0.6538716 0.2242761 NA 4.25 NA
** How it works in a nutshell
When using *lava*, the p.values that are obtained from the summary
(Wald tests) rely on a Gaussian approximation and maximum likelihood
estimation. While being asymptotically valid, they usually do not
provide a very accurate control of the type 1 error rate in small
samples. Simulations have shown that the type 1 error rate tends to be
too large, i.e. the p.values are have a downward bias. *lavaSearch2*
provides two improvements:
- using a Student's \(t\)-distribution instead of a Gaussian
distribution to account for the uncertainty on the variance of the
coefficients. The degrees of freedom are estimated using Satterwaite
approximation, i.e. identifying the chi-squared distribution that
best fit the observed moments of the variance of the coefficients.
- (partially) correcting for the first order bias in the ML estimates
of the variance parameters. This correction also affects the
standard error of the estimates.
** Single univariate Wald test
We will illustrate the functionalities using a simulated dataset:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
## simulate data
mSim <- lvm(Y1~eta,Y2~eta,Y3~0.4+0.4*eta,Y4~0.6+0.6*eta,eta~0.5*X1+0.7*X2)
latent(mSim) <- ~eta
set.seed(12)
df.data <- sim(mSim, n = 3e1, latent = FALSE)
## display
head(df.data)
#+END_SRC
#+RESULTS:
: Y1 Y2 Y3 Y4 X1 X2
: 1 -1.7606233 0.1264910 0.66442611 0.2579355 0.2523400 -1.5431527
: 2 3.0459417 2.4631929 0.00283511 2.1714802 0.6423143 -1.3206009
: 3 -2.1443162 -0.3318033 0.82253070 0.3008415 -0.3469361 -0.6758215
: 4 -2.5050328 -1.3878987 -0.10474850 -1.7814956 -0.5152632 -0.3670054
: 5 -2.5307249 0.3012422 1.22046986 -1.0195188 0.3981689 -0.5138722
: 6 -0.9521366 0.1669496 -0.21422548 1.5954456 0.9535572 -0.9592540
We first fit the latent variable model using, as usual, the =estimate=
function:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
m <- lvm(c(Y1,Y2,Y3,Y4)~eta, eta~X1+X2)
e <- estimate(m, data = df.data)
#+END_SRC
#+RESULTS:
We can extract the Wald tests based on the traditional approach using
=summary=:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
summary(e)$coef[c("Y2","Y3","Y2~eta","Y3~eta","eta~X1","eta~X2"), ]
#+END_SRC
#+RESULTS:
: Estimate Std. Error Z-value P-value
: Y2 0.2335412 0.2448593 0.9537775 0.3401962906
: Y3 0.5114275 0.1785886 2.8637186 0.0041869974
: Y2~eta 0.9192847 0.2621248 3.5070497 0.0004531045
: Y3~eta 0.2626930 0.1558978 1.6850339 0.0919820326
: eta~X1 0.5150072 0.2513393 2.0490515 0.0404570768
: eta~X2 0.6212222 0.2118930 2.9317729 0.0033703310
As explain at the begining of this section, *lavaSearch2* implements
two corrections that can be directly applied by calling the =summary2=
method:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
summary2(e)$coef[c("Y2","Y3","Y2~eta","Y3~eta","eta~X1","eta~X2"), ]
#+END_SRC
#+RESULTS:
: estimate se statistic df p.value
: Y2 0.2335412 0.2518218 0.9274067 12.332567 0.371510180
: Y3 0.5114275 0.1828716 2.7966475 24.693254 0.009851893
: Y2~eta 0.9192847 0.2653220 3.4647887 3.518708 0.031533355
: Y3~eta 0.2626930 0.1562776 1.6809386 5.953880 0.144155715
: eta~X1 0.5150072 0.2642257 1.9491180 20.047646 0.065412240
: eta~X2 0.6212222 0.2221293 2.7966698 27.739008 0.009272041
To use the Satterthwaite correction alone, set the argument
=ssc= to =FALSE=:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
summary2(e, ssc = FALSE)$coef[c("Y2","Y3","Y2~eta","Y3~eta","eta~X1","eta~X2"), ]
#+END_SRC
#+RESULTS:
: estimate se statistic df p.value
: Y2 0.2335412 0.2448593 0.9537775 12.911877 0.357711941
: Y3 0.5114275 0.1785886 2.8637186 25.780552 0.008210968
: Y2~eta 0.9192847 0.2621248 3.5070497 3.674640 0.028396459
: Y3~eta 0.2626930 0.1558978 1.6850339 6.222912 0.141185621
: eta~X1 0.5150072 0.2513393 2.0490515 21.571210 0.052814794
: eta~X2 0.6212222 0.2118930 2.9317729 30.370334 0.006351686
When using the Satterthwaite correction alone, the standard error are
left unchanged compared to the original lava output. The only change
is how the p-values are computed, i.e. based on the quantiles of a
Student's \(t\)-distribution instead of a Gaussian distribution.
To only use the bias correction, set the argument =df= to =FALSE=:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
summary2(e, df = FALSE)$coef[c("Y2","Y3","Y2~eta","Y3~eta","eta~X1","eta~X2"), ]
#+END_SRC
#+RESULTS:
: estimate se statistic df p.value
: Y2 0.2335412 0.2518218 0.9274067 Inf 0.3537154044
: Y3 0.5114275 0.1828716 2.7966475 Inf 0.0051635832
: Y2~eta 0.9192847 0.2653220 3.4647887 Inf 0.0005306482
: Y3~eta 0.2626930 0.1562776 1.6809386 Inf 0.0927748494
: eta~X1 0.5150072 0.2642257 1.9491180 Inf 0.0512813393
: eta~X2 0.6212222 0.2221293 2.7966698 Inf 0.0051632271
** Saving computation time with =estimate2=
For each call to =summary2= the small sample size correction(s) will
be recalculated. However the calculation of the sample correction(s)
can be time consuming.
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
system.time(
res <- summary2(e, ssc = FALSE)
)
#+END_SRC
#+RESULTS:
: user system elapsed
: 0.128 0.000 0.129
In such a case one can pre-compute the main terms of the correction
(e.g. the derivative of the variance-covariance matrix) once for all
using the =estimate2= method:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
e2 <- estimate2(e)
#+END_SRC
#+RESULTS:
=estimate2= automatically store the pre-computed terms in the
=sCorrect= slot of the object. It also adds the class =lvmfit2= to the
object:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
class(e2)
#+END_SRC
#+RESULTS:
: [1] "lvmfit2" "lvmfit"
Calling the =summary= methods is now much faster:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
system.time(
summary(e2)
)
#+END_SRC
#+RESULTS:
: user system elapsed
: 0.027 0.000 0.026
** Single multivariate Wald test
The function =compare= from the lava package can be use to perform
multivariate Wald tests, i.e. to test simultaneously several linear
combinations of the coefficients. We can test the linear hypothesis by
specifying in =compare= the parameters we would like to test:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
resTest0 <- lava::compare(e, par = c("Y2","Y2~eta","eta~X1"))
resTest0
#+END_SRC
#+RESULTS:
#+begin_example
- Wald test -
Null Hypothesis:
[Y2] = 0
[Y2~eta] = 0
[eta~X1] = 0
data:
chisq = 21.332, df = 3, p-value = 8.981e-05
sample estimates:
Estimate Std.Err 2.5% 97.5%
[Y2] 0.2335412 0.2448593 -0.2463741 0.7134566
[Y2~eta] 0.9192847 0.2621248 0.4055295 1.4330399
[eta~X1] 0.5150072 0.2513393 0.0223912 1.0076231
#+end_example
=compare= uses a chi-squared distribution to compute the p-values.
Similarly to the Gaussian approximation, while being valid
asymptotically this procedure may not provide a very accurate control
of the type 1 error rate in small samples. Fortunately, the correction
proposed for the univariate Wald statistic can be adapted to the
multivariate Wald statistic. This is achieved by =compare2=:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
resTest1 <- compare2(e, linfct = c("Y2","Y2~eta","eta~X1"))
resTest1
#+END_SRC
#+RESULTS:
#+begin_example
- Wald test -
Null Hypothesis:
[Y2] = 0
[Y2~eta] = 0
[eta~X1] = 0
data:
F-statistic = 6.7118, df1 = 3, df2 = 11.11, p-value = 0.007577
sample estimates:
Estimate Std.Err df 2.5% 97.5%
[Y2] 0.2335412 0.2518218 12.332567 -0.31349486 0.7805774
[Y2~eta] 0.9192847 0.2653220 3.518708 0.14114161 1.6974278
[eta~X1] 0.5150072 0.2642257 20.047646 -0.03607414 1.0660884
#+end_example
The same result could have been obtained by first defining a contrast
matrix to encode (by rows) which linear combination of coefficients
should be tested, e.g.:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
resC <- createContrast(e, linfct = c("Y2=0","Y2~eta=0","eta~X1=0"))
resC$contrast
#+END_SRC
#+RESULTS:
: Y2 Y3 Y4 eta Y2~eta Y3~eta Y4~eta eta~X1 eta~X2 Y1~~Y1 Y2~~Y2 Y3~~Y3 Y4~~Y4
: [Y2] = 0 1 0 0 0 0 0 0 0 0 0 0 0 0
: [Y2~eta] = 0 0 0 0 0 1 0 0 0 0 0 0 0 0
: [eta~X1] = 0 0 0 0 0 0 0 0 1 0 0 0 0 0
: eta~~eta
: [Y2] = 0 0
: [Y2~eta] = 0 0
: [eta~X1] = 0 0
and passing it to the argument =linfct=:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
resTest2 <- compare2(e2, linfct = resC$contrast)
identical(resTest1,resTest2)
#+END_SRC
#+RESULTS:
: [1] TRUE
Now a F-distribution is used to compute the p-values. As before on can
set the argument =ssc= to =FALSE= to use the Satterthwaite
approximation alone:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
resTest3 <- compare2(e, ssc = FALSE, linfct = resC$contrast)
resTest3
#+END_SRC
#+RESULTS:
#+begin_example
- Wald test -
Null Hypothesis:
[Y2] = 0
[Y2~eta] = 0
[eta~X1] = 0
data:
F-statistic = 7.1107, df1 = 3, df2 = 11.13, p-value = 0.006182
sample estimates:
Estimate Std.Err df 2.5% 97.5%
[Y2] 0.2335412 0.2448593 12.91188 -0.295812256 0.7628948
[Y2~eta] 0.9192847 0.2621248 3.67464 0.165378080 1.6731913
[eta~X1] 0.5150072 0.2513393 21.57121 -0.006840023 1.0368543
#+end_example
In this case the F-statistic of =compare2= is the same as the
chi-squared statistic of =compare= divided by the rank of the contrast matrix:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
resTest0$statistic/qr(resC$contrast)$rank
#+END_SRC
#+RESULTS:
: chisq
: 7.110689
** Robust Wald tests
When one does not want to assume normality distributed residuals,
robust standard error can be used instead of the model based standard
errors. They can be obtained by setting the argument =robust= to =TRUE=
when computing univariate Wald tests:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
summary2(e, robust = TRUE)$coef[c("Y2","Y3","Y2~eta","Y3~eta","eta~X1","eta~X2"), ]
#+END_SRC
#+RESULTS:
: estimate robust SE statistic df p.value
: Y2 0.2335412 0.2353245 0.9924222 12.332567 0.340064859
: Y3 0.5114275 0.1897160 2.6957534 24.693254 0.012453535
: Y2~eta 0.9192847 0.1791240 5.1321143 3.518708 0.009583913
: Y3~eta 0.2626930 0.1365520 1.9237580 5.953880 0.103104593
: eta~X1 0.5150072 0.2167580 2.3759546 20.047646 0.027583693
: eta~X2 0.6212222 0.2036501 3.0504385 27.739008 0.004986632
By default the degrees of freedom of the modeled based variance is
used. Degrees of freedom can be computed via a Satterthwaite
approximation using =lava.options(df.robust=2)=. However it is not
recommended as the resulting degrees of freedom showed a strange
behavior. Multivariate Wald test can be obtained in a similar way
using the =compare2= method:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
compare2(e2, linfct = c("Y2","Y2~eta","eta~X1"), robust = TRUE)
#+END_SRC
#+RESULTS:
#+begin_example
- Wald test -
Null Hypothesis:
[Y2] = 0
[Y2~eta] = 0
[eta~X1] = 0
data:
F-statistic = 12.526, df1 = 3, df2 = 8.41, p-value = 0.001832
sample estimates:
Estimate robust SE df 2.5% 97.5%
[Y2] 0.2335412 0.2353245 12.332567 -0.27765746 0.7447400
[Y2~eta] 0.9192847 0.1791240 3.518708 0.39394539 1.4446240
[eta~X1] 0.5150072 0.2167580 20.047646 0.06292679 0.9670875
#+end_example
It may be surprising that the (corrected) robust standard errors are
(in this example) smaller than the (corrected) model-based one. This
is also the case for the uncorrected one:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
rbind(robust = diag(crossprod(iid(e))),
model = diag(vcov(e)))
#+END_SRC
#+RESULTS:
: Y2 Y3 Y4 eta Y2~eta Y3~eta Y4~eta
: robust 0.04777252 0.03325435 0.03886706 0.06011727 0.08590732 0.02179453 0.02981895
: model 0.05995606 0.03189389 0.04644303 0.06132384 0.06870941 0.02430412 0.03715633
: eta~X1 eta~X2 Y1~~Y1 Y2~~Y2 Y3~~Y3 Y4~~Y4 eta~~eta
: robust 0.05166005 0.05709393 0.2795272 0.1078948 0.03769614 0.06923165 0.3198022
: model 0.06317144 0.04489865 0.1754744 0.1600112 0.05112998 0.10152642 0.2320190
This may be explained by the fact the robust standard error tends to
be liberal in small samples (e.g. see Kauermann 2001, A Note on the
Efficiency of Sandwich Covariance Matrix Estimation ).
** Assessing the type 1 error of the testing procedure
The function =calibrateType1= can be used to assess the type 1 error
of a Wald statistic on a specific example. This however assumes that
the estimated model is correctly specified. Let's make an example. For
this we simulate some data:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
set.seed(10)
m.generative <- lvm(Y ~ X1 + X2 + Gene)
categorical(m.generative, labels = c("ss","ll")) <- ~Gene
d <- lava::sim(m.generative, n = 50, latent = FALSE)
#+END_SRC
#+RESULTS:
Let's now imagine that we want to analyze the relationship between
Y and Gene using the following dataset:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
head(d)
#+END_SRC
#+RESULTS:
: Y X1 X2 Gene
: 1 -1.14369572 -0.4006375 -0.7618043 ss
: 2 -0.09943370 -0.3345566 0.4193754 ss
: 3 -0.04331996 1.3679540 -1.0399434 ll
: 4 2.25017335 2.1377671 0.7115740 ss
: 5 0.16715138 0.5058193 -0.6332130 ss
: 6 1.73931135 0.7863424 0.5631747 ss
For this we fit define a LVM:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
myModel <- lvm(Y ~ X1 + X2 + Gene)
#+END_SRC
#+RESULTS:
and estimate the coefficients of the model using =estimate=:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
e <- estimate(myModel, data = d)
e
#+END_SRC
#+RESULTS:
: Estimate Std. Error Z-value P-value
: Regressions:
: Y~X1 1.02349 0.12017 8.51728 <1e-12
: Y~X2 0.91519 0.12380 7.39244 <1e-12
: Y~Genell 0.48035 0.23991 2.00224 0.04526
: Intercepts:
: Y -0.11221 0.15773 -0.71141 0.4768
: Residual Variances:
: Y 0.67073 0.13415 5.00000
We can now use =calibrateType1= to perform a simulation study. We just
need to define the null hypotheses (i.e. which coefficients should be
set to 0 when generating the data) and the number of simulations:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
mySimulation <- calibrateType1(e,
param = "Y~Genell",
n.rep = 50,
trace = FALSE, seed = 10)
#+END_SRC
#+RESULTS:
To save time we only make 50 simulations but much more are necessary
to really assess the type 1 error rate. Then we can use the =summary=
method to display the results:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
summary(mySimulation)
#+END_SRC
#+RESULTS:
#+begin_example
Estimated type 1 error rate [95% confidence interval]
sample size: 50 | number of simulations: 50
link statistic correction type1error CI
[Y~Genell] == 0 Wald Gaus 0.12 [0.05492 ; 0.24242]
Satt 0.10 [0.04224 ; 0.21869]
SSC 0.08 [0.03035 ; 0.19456]
SSC + Satt 0.08 [0.03035 ; 0.19456]
Corrections: Gaus = Gaussian approximation
SSC = small sample correction
Satt = Satterthwaite approximation
#+end_example
\clearpage
* Adjustment for multiple comparisons
** Univariate Wald test, single model
When performing multiple testing, adjustment for multiple comparisons
is necessary in order to control the type 1 error rate, i.e. to
provide interpretable p.values. The *multcomp* package enables to do
such adjustment when all tests comes from the same =lvmfit= object:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
## simulate data
mSim <- lvm(Y ~ 0.25 * X1 + 0.3 * X2 + 0.35 * X3 + 0.4 * X4 + 0.45 * X5 + 0.5 * X6)
set.seed(10)
df.data <- sim(mSim, n = 4e1)
## fit lvm
e.lvm <- estimate(lvm(Y ~ X1 + X2 + X3 + X4 + X5 + X6), data = df.data)
name.coef <- names(coef(e.lvm))
n.coef <- length(name.coef)
## Create contrast matrix
resC <- createContrast(e.lvm, linfct = paste0("Y~X",1:6), rowname.rhs = FALSE)
resC$contrast
#+END_SRC
#+RESULTS:
: Y Y~X1 Y~X2 Y~X3 Y~X4 Y~X5 Y~X6 Y~~Y
: [Y~X1] 0 1 0 0 0 0 0 0
: [Y~X2] 0 0 1 0 0 0 0 0
: [Y~X3] 0 0 0 1 0 0 0 0
: [Y~X4] 0 0 0 0 1 0 0 0
: [Y~X5] 0 0 0 0 0 1 0 0
: [Y~X6] 0 0 0 0 0 0 1 0
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
e.glht <- multcomp::glht(e.lvm, linfct = resC$contrast, rhs = resC$null)
summary(e.glht)
#+END_SRC
#+RESULTS:
#+begin_example
Simultaneous Tests for General Linear Hypotheses
Fit: estimate.lvm(x = lvm(Y ~ X1 + X2 + X3 + X4 + X5 + X6), data = df.data)
Linear Hypotheses:
Estimate Std. Error z value Pr(>|z|)
[Y~X1] == 0 0.3270 0.1589 2.058 0.20725
[Y~X2] == 0 0.4025 0.1596 2.523 0.06611 .
[Y~X3] == 0 0.5072 0.1383 3.669 0.00144 **
[Y~X4] == 0 0.3161 0.1662 1.902 0.28582
[Y~X5] == 0 0.3875 0.1498 2.586 0.05554 .
[Y~X6] == 0 0.3758 0.1314 2.859 0.02482 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Adjusted p values reported -- single-step method)
#+end_example
Note that this correction relies on the Gaussian approximation. To use
small sample corrections implemented in *lavaSearch2*, just call
=glht2= instead of =glht=:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
e.glht2 <- glht2(e.lvm, linfct = resC$contrast, rhs = resC$null)
summary(e.glht2)
#+END_SRC
#+RESULTS:
#+begin_example
Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means (two sided tests)
Fit: estimate.lvm(x = lvm(Y ~ X1 + X2 + X3 + X4 + X5 + X6), data = df.data)
Standard errors: Model-based
Linear Hypotheses:
estimate se df lower upper statistic p.value
[Y~X1] == 0 0.327006 0.174976 33.000000 -0.158914 0.812926 1.8689 0.32895
[Y~X2] == 0 0.402533 0.175670 33.000000 -0.085313 0.890380 2.2914 0.14817
[Y~X3] == 0 0.507242 0.152209 33.000000 0.084548 0.929937 3.3325 0.01232 *
[Y~X4] == 0 0.316099 0.182995 33.000000 -0.192089 0.824288 1.7274 0.41283
[Y~X5] == 0 0.387459 0.164970 33.000000 -0.070673 0.845590 2.3487 0.13153
[Y~X6] == 0 0.375763 0.144712 33.000000 -0.026113 0.777639 2.5966 0.07617 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(CIs/p-values adjusted for multiple comparisons -- single step max-test)
Error when computing the adjusted p-value by numerical integration: 0.00012125
#+end_example
The single step method is the appropriate correction when one wants to
report the most significant p-value relative to a set of
hypotheses. If the second most significant p-value is also to be
reported then the method "free" is more efficient:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
summary(e.glht2, test = multcomp::adjusted("free"))
#+END_SRC
#+RESULTS:
#+begin_example
Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means (two sided tests)
Fit: estimate.lvm(x = lvm(Y ~ X1 + X2 + X3 + X4 + X5 + X6), data = df.data)
Standard errors: Model-based
Linear Hypotheses:
estimate se df statistic p.value
[Y~X1] == 0 0.32701 0.17498 33.00000 1.8689 0.12911
[Y~X2] == 0 0.40253 0.17567 33.00000 2.2914 0.09129 .
[Y~X3] == 0 0.50724 0.15221 33.00000 3.3325 0.01242 *
[Y~X4] == 0 0.31610 0.18299 33.00000 1.7274 0.12911
[Y~X5] == 0 0.38746 0.16497 33.00000 2.3487 0.09129 .
[Y~X6] == 0 0.37576 0.14471 33.00000 2.5966 0.06451 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(CIs/p-values adjusted for multiple comparisons -- step down max-test)
#+end_example
See the book: "Multiple Comparisons Using R" by Frank Bretz, Torsten
Hothorn, and Peter Westfall (2011, CRC Press) for details about the
theory underlying the *multcomp* package.
** Univariate Wald test, multiple models
Pipper et al. in "A Versatile Method for Confirmatory Evaluation of
the Effects of a Covariate in Multiple Models" (2012, Journal of the
Royal Statistical Society, Series C) developed a method to assess the
effect of an exposure on several outcomes when a different model is
fitted for each outcome. This method has been implemented in the =mmm=
function from the *multcomp* package for glm and Cox
models. *lavaSearch2* extends it to =lvm=.
Let's consider an example where we wish to assess the treatment effect
on three outcomes X, Y, and Z. We have at hand three measurements
relative to outcome Z for each individual:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
mSim <- lvm(X ~ Age + 0.5*Treatment,
Y ~ Gender + 0.25*Treatment,
c(Z1,Z2,Z3) ~ eta, eta ~ 0.75*treatment,
Age[40:5]~1)
latent(mSim) <- ~eta
categorical(mSim, labels = c("placebo","SSRI")) <- ~Treatment
categorical(mSim, labels = c("male","female")) <- ~Gender
n <- 5e1
set.seed(10)
df.data <- sim(mSim, n = n, latent = FALSE)
head(df.data)
#+END_SRC
#+RESULTS:
#+begin_example
X Age Treatment Y Gender Z1 Z2 Z3
1 39.12289 39.10415 placebo 0.6088958 female 1.8714112 2.2960633 -0.09326935
2 39.56766 39.25191 SSRI 1.0001325 female 0.9709943 0.6296226 1.31035910
3 41.68751 43.05884 placebo 2.1551047 female -1.1634011 -0.3332927 -1.30769267
4 44.68102 44.78019 SSRI 0.3852728 female -1.0305476 0.6678775 0.99780139
5 41.42559 41.13105 placebo -0.8666783 male -1.6342816 -0.8285492 1.20450488
6 42.64811 41.75832 SSRI -1.0710170 female -1.2198019 -1.9602130 -1.85472132
treatment
1 1.1639675
2 -1.5233846
3 -2.5183351
4 -0.7075292
5 -0.2874329
6 -0.4353083
#+end_example
We fit a model specific to each outcome:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
lvmX <- estimate(lvm(X ~ Age + Treatment), data = df.data)
lvmY <- estimate(lvm(Y ~ Gender + Treatment), data = df.data)
lvmZ <- estimate(lvm(c(Z1,Z2,Z3) ~ 1*eta, eta ~ -1 + Treatment),
data = df.data)
#+END_SRC
#+RESULTS:
and combine them into a list of =lvmfit= objects:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
mmm.lvm <- multcomp::mmm(X = lvmX, Y = lvmY, Z = lvmZ)
#+END_SRC
#+RESULTS:
We can then call =glht2= to apply the small sample corrections,
generate a contrast matrix containing tests for all coefficient
related to the treatment, and collect the results:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
lvm.glht2 <- glht2(mmm.lvm, linfct = "TreatmentSSRI")
summary(lvm.glht2)
#+END_SRC
#+RESULTS:
#+begin_example
Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means (two sided tests)
Linear Hypotheses:
estimate se df lower upper statistic
X: [TreatmentSSRI] == 0 0.466150 0.253280 47.000000 -0.154910 1.087209 1.8405
Y: [TreatmentSSRI] == 0 -0.542096 0.261321 47.000000 -1.182874 0.098682 -2.0744
Z: [TreatmentSSRI] == 0 -0.619822 0.440397 47.000000 -1.699707 0.460063 -1.4074
p.value
X: [TreatmentSSRI] == 0 0.1863
Y: [TreatmentSSRI] == 0 0.1165
Z: [TreatmentSSRI] == 0 0.3912
(CIs/p-values adjusted for multiple comparisons -- single step max-test)
Error when computing the adjusted p-value by numerical integration: 0.00025692
#+end_example
This can be compared to the unadjusted p.values:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
summary(lvm.glht2, test = multcomp::adjusted("none"))
#+END_SRC
#+RESULTS:
#+begin_example
Simultaneous Tests for General Linear Hypotheses
Multiple Comparisons of Means (two sided tests)
Linear Hypotheses:
estimate se df lower upper statistic
X: [TreatmentSSRI] == 0 0.466150 0.253280 47.000000 -0.043383 0.975682 1.8405
Y: [TreatmentSSRI] == 0 -0.542096 0.261321 47.000000 -1.067807 -0.016385 -2.0744
Z: [TreatmentSSRI] == 0 -0.619822 0.440397 47.000000 -1.505787 0.266143 -1.4074
p.value
X: [TreatmentSSRI] == 0 0.07202 .
Y: [TreatmentSSRI] == 0 0.04354 *
Z: [TreatmentSSRI] == 0 0.16588
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(CIs/p-values not adjusted for multiple comparisons)
#+end_example
\clearpage
* Model diagnostic
** Detection of local dependencies
The =modelsearch= function of *lava* is a diagnostic tool for latent
variable models. It enables to search for local dependencies
(i.e. model misspecification) and add them to the model. Obviously it
is a data-driven procedure and its usefulness can be discussed,
especially in small samples:
- the procedure is instable, i.e. is likely to lead to two different
models when applied on two different dataset sampled from the same
generative model.
- it is hard to define a meaningful significance threshold since
p-values should be adjusted for multiple comparisons and sequential
testing. However traditional methods like Bonferroni-Holm tend to
over corrected and therefore reduce the power of the procedure since
they assume that the test are independent.
The function =modelsearch2= in *lavaSearch2* partially solves the
second issue by adjusting the p-values for multiple testing. Let's see
an example:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
## simulate data
mSim <- lvm(c(y1,y2,y3)~u, u~x1+x2)
latent(mSim) <- ~u
covariance(mSim) <- y2~y3
transform(mSim, Id~u) <- function(x){1:NROW(x)}
set.seed(10)
df.data <- lava::sim(mSim, n = 125, latent = FALSE)
head(df.data)
#+END_SRC
#+RESULTS:
: y1 y2 y3 x1 x2 Id
: 1 5.5071523 4.883752014 6.2928016 0.8694750 2.3991549 1
: 2 -0.6398644 0.025832617 0.5088030 -0.6800096 -0.0898721 2
: 3 -2.5835495 -2.616715027 -2.8982645 0.1732145 -0.8216484 3
: 4 -2.5312637 -2.518185427 -2.9015033 -0.1594380 -0.2869618 4
: 5 1.6346220 -0.001877577 0.3705181 0.7934994 0.1312789 5
: 6 0.4939972 1.759884014 1.5010499 1.6943505 -1.0620840 6
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
## fit model
m <- lvm(c(y1,y2,y3)~u, u~x1)
latent(m) <- ~u
addvar(m) <- ~x2
e.lvm <- estimate(m, data = df.data)
#+END_SRC
#+RESULTS:
=modelsearch2= can be used to sequentially apply the =modelsearch=
function with a given correction for the p.values:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
resScore <- modelsearch2(e.lvm, alpha = 0.1, trace = FALSE)
displayScore <- summary(resScore)
#+END_SRC
#+RESULTS:
: Sequential search for local dependence using the score statistic
: The variable selection procedure retained 2 variables:
: link statistic p.value adjusted.p.value dp.Info selected nTests
: 1 u~x2 36.436487 1.577228e-09 5.008615e-08 1 TRUE 10
: 2 y2~~y3 6.912567 8.559203e-03 6.056378e-02 1 TRUE 9
: 3 y3~x1 3.136429 7.656125e-02 2.814343e-01 1 FALSE 8
: Confidence level: 0.9 (two sided, adjustement: fastmax)
This indeed matches the highest score statistic found by
=modelsearch=:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
resScore0 <- modelsearch(e.lvm, silent = TRUE)
c(statistic = sqrt(max(resScore0$test[,"Test Statistic"])),
p.value = min(resScore0$test[,"P-value"]))
#+END_SRC
#+RESULTS:
: statistic p.value
: 6.036264e+00 1.577228e-09
We can compare the adjustment using the max distribution to bonferroni:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
data.frame(link = displayScore$table[,"link"],
none = displayScore$table[,"p.value"],
bonferroni = displayScore$table[,"p.value"]*displayScore$table[1,"nTests"],
max = displayScore$table[,"adjusted.p.value"])
#+END_SRC
#+RESULTS:
: link none bonferroni max
: 1 u~x2 1.577228e-09 1.577228e-08 5.008615e-08
: 2 y2~~y3 8.559203e-03 8.559203e-02 6.056378e-02
: 3 y3~x1 7.656125e-02 7.656125e-01 2.814343e-01
In theory, the correction based on the max statistic should give a p
value that is smaller or equal than the p value adjusted using
Bonferroni. However for for very small p-values, the max-correction
can be numerically inaccurate and result in p-values that are slightly
larger. The evolution of the estimation of a given coefficient across
the sequential search can be displayed using =autoplot=:
#+BEGIN_SRC R :results graphics :file "c:/Users/hpl802/Documents/GitHub/lavaSearch2/vignettes/modelsearch.png" :exports results :session *R* :cache no
autoplot(resScore, param = "u~x1")
#+END_SRC
#+RESULTS:
[[file:./modelsearch.png]]
In many cases, all links are not plausible so the user should
indicates which links should be investigated by =modelsearch2=. This
can be done via the argument =link=:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
resRed <- modelsearch2(e.lvm, link = c("y1~~y2","y1~~y3","y2~~y3"), trace = FALSE)
print(resRed)
#+END_SRC
#+RESULTS:
: Sequential search for local dependence using the score statistic
: The variable selection procedure did not retain any variable
: link statistic p.value adjusted.p.value dp.Info selected nTests
: 1 y1~~y3 3.076875 0.07941299 0.1818963 1 FALSE 3
: Confidence level: 0.95 (two sided, adjustement: fastmax)
The function =findNewLink= can help the user to identify the set of
relevant links:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
findNewLink(e.lvm$model, type = "covariance")$link
#+END_SRC
#+RESULTS:
: [1] "y1~~y2" "y1~~y3" "y2~~y3"
** Checking that the names of the variables in the model match those of the data
When estimating latent variable models using *lava*, it sometimes
happens that the model does not converge:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
## simulate data
set.seed(10)
df.data <- sim(lvm(Y~X1+X2), 1e2)
## fit model
mWrong <- lvm(Y ~ X + X2)
eWrong <- estimate(mWrong, data = df.data)
#+END_SRC
#+RESULTS:
: Warning messages:
: 1: In estimate.lvm(mWrong, data = df.data) :
: Lack of convergence. Increase number of iteration or change starting values.
: 2: In sqrt(diag(asVar)) : NaNs produced
This can have several reasons:
- the model is not identifiable.
- the optimization routine did not managed to find a local
optimum. This may happen for complex latent variable model where the
objective function is not convex or locally convex.
- the user has made a mistake when defining the model or has not given
the appropriate dataset.
The =checkData= function enables to check the last point. It compares
the observed variables defined in the model and the one given by the
dataset. In case of mismatch it returns a message:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
checkData(mWrong, df.data)
#+END_SRC
#+RESULTS:
: Missing variable in data: X
In presence of latent variables, the user needs to explicitely define
them in the model, otherwise =checkData= will identify them as an
issue:
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
## simulate data
set.seed(10)
mSim <- lvm(c(Y1,Y2,Y3)~eta)
latent(mSim) <- ~eta
df.data <- sim(mSim, n = 1e2, latent = FALSE)
## fit model
m <- lvm(c(Y1,Y2,Y3)~eta)
checkData(m, data = df.data)
#+END_SRC
#+RESULTS:
: Missing variable in data: eta
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
latent(m) <- ~eta
checkData(m, data = df.data)
#+END_SRC
#+RESULTS:
: No issue detected
\clearpage
* Information about the R session used for this document
#+BEGIN_SRC R :exports both :results output :session *R* :cache no
sessionInfo()
#+END_SRC
#+RESULTS:
#+begin_example
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.4 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] lavaSearch2_2.0.1 lava_1.7.2 ggplot2_3.4.0 butils.base_1.2
[5] Rcpp_1.0.9 devtools_2.4.3 usethis_2.1.5 data.table_1.14.2
loaded via a namespace (and not attached):
[1] pkgload_1.2.4 splines_4.2.0 foreach_1.5.2
[4] brio_1.1.3 assertthat_0.2.1 butils_1.4.7
[7] remotes_2.4.2 sessioninfo_1.2.2 globals_0.16.1
[10] numDeriv_2016.8-1.1 pillar_1.8.1 lattice_0.20-45
[13] glue_1.6.2 digest_0.6.31 colorspace_2.0-3
[16] sandwich_3.0-2 Matrix_1.4-1 plyr_1.8.7
[19] pkgconfig_2.0.3 listenv_0.8.0 purrr_1.0.0
[22] mvtnorm_1.1-3 scales_1.2.1 processx_3.5.3
[25] tibble_3.1.8 generics_0.1.3 ellipsis_0.3.2
[28] TH.data_1.1-1 cachem_1.0.6 withr_2.5.0
[31] cli_3.5.0 survival_3.5-0 magrittr_2.0.3
[34] crayon_1.5.2 memoise_2.0.1 ps_1.7.0
[37] fs_1.5.2 future_1.28.0 fansi_1.0.3
[40] parallelly_1.32.1 doParallel_1.0.17 nlme_3.1-157
[43] MASS_7.3-57 xml2_1.3.3 RcppArmadillo_0.11.2.0.0
[46] pkgbuild_1.3.1 progressr_0.11.0 tools_4.2.0
[49] prettyunits_1.1.1 lifecycle_1.0.3 multcomp_1.4-20
[52] stringr_1.5.0 munsell_0.5.0 callr_3.7.0
[55] compiler_4.2.0 rlang_1.0.6 grid_4.2.0
[58] iterators_1.0.14 boot_1.3-28 testthat_3.1.4
[61] gtable_0.3.1 codetools_0.2-18 abind_1.4-5
[64] DBI_1.1.3 roxygen2_7.2.1 reshape2_1.4.4
[67] R6_2.5.1 zoo_1.8-11 knitr_1.39
[70] dplyr_1.0.10 fastmap_1.1.0 future.apply_1.9.1
[73] utf8_1.2.2 rprojroot_2.0.3 desc_1.4.1
[76] stringi_1.7.8 parallel_4.2.0 vctrs_0.5.1
[79] tidyselect_1.2.0 xfun_0.31
#+end_example
* CONFIG :noexport:
#+LANGUAGE: en
#+LaTeX_CLASS: org-article
#+LaTeX_CLASS_OPTIONS: [12pt]
#+OPTIONS: title:t author:t toc:nil todo:nil
#+OPTIONS: H:3 num:t
#+OPTIONS: TeX:t LaTeX:t
** Code
#+PROPERTY: header-args :session *R*
#+PROPERTY: header-args :tange yes % extract source code: http://orgmode.org/manual/Extracting-source-code.html
#+PROPERTY: header-args :cache no
#+LATEX_HEADER: \RequirePackage{fancyvrb}
#+LATEX_HEADER: \DefineVerbatimEnvironment{verbatim}{Verbatim}{fontsize=\small,formatcom = {\color[rgb]{0.5,0,0}}}
** Display
#+LaTeX_HEADER: \geometry{a4paper, left=15mm, right=15mm}
#+LATEX_HEADER: \RequirePackage{colortbl} % arrayrulecolor to mix colors
#+LATEX_HEADER: \RequirePackage{setspace} % to modify the space between lines - incompatible with footnote in beamer
#+LaTeX_HEADER:\usepackage{authblk} % enable several affiliations (clash with beamer)
#+LaTeX_HEADER:\renewcommand{\baselinestretch}{1.1}
#+LATEX_HEADER:\geometry{top=1cm}
** List
#+LaTeX_HEADER: \usepackage{enumitem}
** Notations
#+LATEX_HEADER: \RequirePackage{xspace} %
#+LATEX_HEADER: \newcommand\Rlogo{\textbf{\textsf{R}}\xspace} %
** Image
#+LATEX_HEADER: \RequirePackage{epstopdf} % to be able to convert .eps to .pdf image files
|