File: test3-multcomp.R

package info (click to toggle)
r-cran-lavasearch2 2.0.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,832 kB
  • sloc: cpp: 28; sh: 13; makefile: 2
file content (219 lines) | stat: -rw-r--r-- 8,217 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
### test-mmm2.R --- 
##----------------------------------------------------------------------
## Author: Brice Ozenne
## Created: nov 29 2017 (15:22) 
## Version: 
## Last-Updated: Jan 12 2022 (14:46) 
##           By: Brice Ozenne
##     Update #: 130
##----------------------------------------------------------------------
## 
### Commentary: 
## Test battery:
##  - list of linear regressions:
##      Compare multcomp:::glht to lavaSearch2:::glht2 (no small sample adjustment)
##      * standard error derived from the information matrix
##      * robust standard error derived from the iid decomposition
##
##  - latent variable models:
##      Compare multcomp:::glht to lavaSearch2:::glht2 (no small sample adjustment)
##      * standard error derived from the information matrix, with or without second member
##
##  - list of latent variable model (for linear regressions):
##      Compare multcomp:::glht to lavaSearch2:::glht2 (no small sample adjustment)
##      * standard error derived from the information matrix
##
### Change Log:
##----------------------------------------------------------------------
## 
### Code:

## * header
## rm(list = ls())
if(FALSE){ ## already called in test-all.R
    library(testthat)
    library(lavaSearch2)
}

library(multcomp)
library(sandwich)
library(emmeans)
lava.options(symbols = c("~","~~"))

context("multcomp - mmm")

## * simulation
mSim <- lvm(c(Y1,Y2,Y3,Y4)~ beta * eta,
            E ~ 1, Y1 ~ 0.25*T1 + 0.5*T2 + 0.05*T3)
latent(mSim) <- "eta"
set.seed(10)
n <- 1e2

df.data <- lava::sim(mSim, n, latent = FALSE, p = c(beta = 1))
df.data$eY1 <- exp(df.data$Y1)

## * linear regressions with logical constrains
e.lm <- lm(Y1 ~ T1 + T2 + T3, data = df.data)
e.lvm <- estimate(lvm(Y1 ~ T1 + T2 + T3), data = df.data)
## summary(e.lm)

test_that("glht vs. glht2 (logical constrains)", {
    e.glht <- glht(e.lm, linfct = c("T2-T1=0",
                                    "T2-T3=0",
                                    "T1-T3=0"))
    ## summary(e.glht, test = adjusted("none"))
    ## summary(e.glht, test = adjusted("bonferroni"))

    e.glht2 <- glht2(e.lvm, linfct = c("Y1~T2-Y1~T1=0",
                                       "Y1~T2-Y1~T3=0",
                                       "Y1~T1-Y1~T3=0"))
    
    expect_equal(unname(e.glht$vcov),unname(e.glht2$vcov[1:4,1:4]), tol = 1e-6)
    expect_equal(unname(e.glht$coef),unname(e.glht2$coef[1:4]), tol = 1e-6)

    eS.glht <- summary(e.glht, test = adjusted("Shaffer"))
    eS.glht2 <- summary(e.glht2, test = adjusted("Shaffer"))

    expect_equivalent(eS.glht$test[c("coefficients","sigma","tstat","pvalues")],
                      eS.glht2$test[c("coefficients","sigma","tstat","pvalues")], tol = 1e-6)
})

test_that("glht2 (back-transformation)", {
    e.log.lvm <- estimate(lvm(log(eY1) ~ T1 + T2 + T3), data = df.data)

    e.glht2 <- glht2(e.log.lvm, linfct = c("eY1~T1","eY1~T2","eY1~T3"))
    df.glht2 <- summary(e.glht2, transform = "exp", test = adjusted("none"))$table2

    e.glht2.bis <- glht2(e.log.lvm, linfct = "eY1~T3")
    df.glht2.bis <- summary(e.glht2.bis, transform = exp, test = adjusted("none"))$table2

    expect_equal(as.double(df.glht2[3,]) , as.double(df.glht2.bis[1,]))
})

## * list of linear regressions
name.Y <- setdiff(endogenous(mSim),"E")[1:2]
n.Y <- length(name.Y)

ls.lm <- lapply(name.Y, function(iY){
    eval(parse( text = paste("lm(",iY,"~E, data = df.data)")))
})
names(ls.lm) <- name.Y
class(ls.lm) <- "mmm"

ls.lvm <- lapply(name.Y, function(iY){
    eval(parse( text = paste("estimate(lvm(",iY,"~E), data = df.data)")))
})
names(ls.lvm) <- name.Y
class(ls.lvm) <- "mmm"

test_that("glht vs. glht2 (list lm): information std", {
    e.glht <- glht(ls.lm, mlf("E = 0"))
    e.glht2 <- glht2(ls.lvm, linfct = "E")
    e.glht2C <- glht2(ls.lvm, linfct = createContrast(ls.lvm, linfct = "E")$contrast)

    eS.glht <- summary(e.glht)
    eS.glht2 <- summary(e.glht2)
    eS.glht2C <- summary(e.glht2C)

    expect_equivalent(eS.glht2$test, eS.glht2C$test, tol = 1e-6)
    expect_equal(unname(eS.glht$test$tstat), unname(eS.glht2$test$tstat), tol = 1e-6)
})
     
test_that("glht vs. glht2 (list ml): robust std", {
    e.glht <- summary(glht(ls.lm, mlf("E = 0"), vcov = sandwich))
    e.lava <- rbind(estimate(ls.lm[[1]])$coefmat[2,,drop=FALSE],
                    estimate(ls.lm[[2]])$coefmat[2,,drop=FALSE])
    ## no correction for the score
    e.glht0 <- summary(glht2(ls.lvm, linfct = "E", robust = TRUE, ssc = "residuals0"))
    ## correction for the score by inflating the residuals such that they have correct variance
    e.glht2 <- summary(glht2(ls.lvm, linfct = "E", robust = TRUE))
    e.glht2C <- summary(glht2(ls.lvm, linfct = createContrast(ls.lvm, linfct = "E")$contrast, robust = TRUE))

    expect_equivalent(e.glht0$test$tstat, e.glht$test$tstat, tol = 1e-6)
    ## cannot compare p.values
    ## because some are based on a student law and others on a gaussian law

    expect_equivalent(e.glht2$test, e.glht2C$test, tol = 1e-6)
    expect_equivalent(e.glht2$test$tstat, e.glht$test$tstat*sqrt(coef(estimate2(ls.lvm[[1]], ssc = "none"))["Y1~~Y1"])/sigma(ls.lm[[1]]), tol = 1e-6)
})


test_that("glht vs. calcDistMaxIntegral", {
    e.glht <- glht(ls.lm, mlf("E = 0"), vcov = sandwich)
    res.GS <- summary(e.glht)

    iid.tempo <- do.call(cbind,lapply(ls.lm, iid)) %*% t(e.glht$linfct)
    beta <- unlist(lapply(ls.lm, coef)) %*% t(e.glht$linfct)
    beta.var <- diag(crossprod(iid.tempo))
    z.value <- beta/sqrt(beta.var)
    res.Search <- calcDistMaxIntegral(as.vector(z.value),
                                      iid = iid.tempo, quantile.compute = FALSE,
                                      df = NULL, trace = FALSE, alpha = 0.05)
    
    expect_equal(as.double(res.Search$p.adjust),
                 as.double(res.GS$test$pvalues),
                 tolerance = attr(res.GS$test$pvalues, "error")
                 )
    ## cannot compare p.values
    ## because some are based on a student law and others on a gaussian law
})



## * lvm
## names(df.data)

m.lvm <- lvm(c(Y1,Y2,Y3)~ eta, eta ~ E,
             Y1~Y4)
e.lvm <- estimate(m.lvm, df.data)

test_that("glht vs. glht2 (lvm): information std", {

    resC <- createContrast(e.lvm, linfct = c("eta~E","Y2=1","Y3=1"))
    e.glht.null <- glht(e.lvm, linfct = resC$contrast)
    e.glht.H1 <- glht(e.lvm, linfct = resC$contrast, rhs = resC$null)

    e.glht2.null <- glht2(e.lvm, linfct = resC$contrast, rhs = rep(0,3),
                          ssc = "none")
    e.glht2.H1 <- glht2(e.lvm, linfct = resC$contrast, rhs = resC$null,
                        ssc = "none")


    eS.glht.null <- summary(e.glht.null)
    eS.glht.H1 <- summary(e.glht.H1)
    eS.glht2.null <- summary(e.glht2.null)
    eS.glht2.H1 <- summary(e.glht2.H1)

    expect_equal(unname(eS.glht.null$test$tstat),
                 unname(eS.glht2.null$test$tstat))
    expect_equal(unname(eS.glht.H1$test$tstat),
                 unname(eS.glht2.H1$test$tstat))
    ## cannot compare p.values
    ## because some are based on a student law and others on a gaussian law
})

## * list of lvm
mmm.lvm <- mmm(Y1 = estimate(lvm(Y1~E), data = df.data),
               Y2 = estimate(lvm(Y2~E), data = df.data),
               Y3 = estimate(lvm(Y3~E), data = df.data),
               Y4 = estimate(lvm(Y4~E), data = df.data)
               )

test_that("glht2 (list lvm): information std", {

    ##    
    resC <- createContrast(mmm.lvm, linfct = paste0("Y",1:4,": Y",1:4,"~E"))
    lvm2.glht <- glht2(mmm.lvm, linfct = resC$contrast,
                       ssc = NA, robust = FALSE)
    lvm2.sglht <- summary(lvm2.glht)    
    expect_equal(lvm2.sglht$df,100)
    
    lvm3.glht <- glht2(mmm.lvm, linfct = resC$contrast,
                       rhs = rnorm(4),
                       ssc = NA, robust = FALSE)
    lvm3.sglht <- summary(lvm3.glht)    
    expect_equal(lvm3.sglht$df,100)
})

##----------------------------------------------------------------------
### test-mmm2.R ends here