File: Chapter.2.6.R

package info (click to toggle)
r-cran-learnbayes 2.15.1-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 1,864 kB
  • sloc: sh: 15; makefile: 2
file content (33 lines) | stat: -rw-r--r-- 621 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
########################
# Section 2.6 Prediction
########################

 library(LearnBayes)

 p=seq(0.05, 0.95, by=.1)
 prior = c(1, 5.2, 8, 7.2, 4.6, 2.1, 0.7, 0.1, 0, 0)
 prior=prior/sum(prior)
 m=20; ys=0:20
 pred=pdiscp(p, prior, m, ys)
 cbind(0:20,pred)

 ab=c(3.26, 7.19)
 m=20; ys=0:20
 pred=pbetap(ab, m, ys)

 p=rbeta(1000,3.26, 7.19)

 y = rbinom(1000, 20, p)

 table(y)

 freq=table(y)
 ys=as.integer(names(freq))
 predprob=freq/sum(freq)
 plot(ys,predprob,type="h",xlab="y",
   ylab="Predictive Probability")

 dist=cbind(ys,predprob)

 covprob=.9
 discint(dist,covprob)