1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
|
solveLP <- function( cvec, bvec, Amat, maximum=FALSE,
const.dir = rep( "<=", length( bvec ) ),
maxiter=1000, zero=1e-9, tol=1e-6, dualtol = tol,
lpSolve=FALSE, solve.dual=FALSE, verbose = 0 )
{
result <- list() # list for results that will be returned
result$status <- 0
rdigits <- -round( log10( zero ) )
nVar <- length(cvec) # number of variables
nCon <- length(bvec) # number of constraints
if( !all.equal( dim( Amat ), c( nCon, nVar ) ) == TRUE ) {
stop( paste( "Matrix A must have as many rows as constraints (=elements",
"of vector b) and as many columns as variables (=elements of vector c).\n" ) )
}
if( length( const.dir ) != nCon ) {
stop( paste( "'const.dir' must have as the elements as constraints",
"(=elements of vector b).\n" ) )
}
if( sum( const.dir == ">=" | const.dir == ">" | const.dir == "=" |
const.dir == "==" | const.dir == "<=" | const.dir == "<" ) < nCon ) {
stop( "'const.dir' may only contain '>=', '>', '=', '==', '<=' or '<'" )
}
if( any( const.dir %in% c( "=", "==" ) ) && ( ! lpSolve ) ) {
warning( "solveLP() might return incorrect results",
" if the model includes equality constraints",
" and argument 'lpSolve' is 'FALSE';",
" please check if solveLP() returns the same results",
" with argument 'lpSolve' equal to 'TRUE';",
" more information on this bug available at",
" linprog's R-Forge site" )
}
## Labels
if( is.null(names(cvec))) {
clab <- as.character(1:nVar)
} else {
clab <- names(cvec)
}
if( is.null(names(bvec))) {
blab <- as.character(1:nCon)
} else {
blab <- names(bvec)
}
const.dir2 <- rep( 0, nCon )
const.dir2[ const.dir == ">=" | const.dir == ">" ] <- 1
const.dir2[ const.dir == "<=" | const.dir == "<" ] <- -1
## lpSolve
if( lpSolve ) {
if( maximum ) {
direction <- "max"
} else {
direction <- "min"
}
lpres <- lp( direction = direction, cvec, Amat, const.dir, bvec )
result$lpStatus <- lpres$status
if( result$lpStatus == 0 ) {
if( min( lpres$solution ) < -tol ) {
result$lpStatus <- 7
} else if( max( ( bvec - c( Amat %*% lpres$solution ) ) *
const.dir2 ) > tol ) {
result$lpStatus <- 3
}
}
if( result$lpStatus != 0 ) {
result$status <- 1
} else {
result$solution <- lpres$solution
names( result$solution ) <- clab
result$opt <- lpres$objval
## Results: Constraints
result$con <- data.frame( actual=NA, dir=const.dir, bvec=bvec, free=NA )
result$con$actual <- round( c( Amat %*% result$solution ), digits=rdigits )
names( result$con$actual ) <- blab
result$con$free <- round( result$con$bvec - result$con$actual, digits=rdigits )
result$con$free[ const.dir2 == 1 ] <- -result$con$free[ const.dir2 == 1 ]
result$con$free[ const.dir2 == 0 ] <- -abs( result$con$free[ const.dir2 == 0 ] )
}
} else {
## Simplex algorithm
iter1 <- 0
iter2 <- 0
## Slack Variables
for(i in 1:nCon) clab <- c( clab, paste("S", blab[i] ) )
cvec2 <- c( cvec, rep( 0, nCon ) )
## Tableau ( Basic Variables, Slack,Variables, P0, Z-C )
Tab <- rbind( cbind( -Amat * const.dir2, diag( 1, nCon, nCon ), -bvec * const.dir2 ),
c( cvec2 * (-1)^maximum, 0 ) )
rownames(Tab) <- c( blab, "Z-C" )
colnames(Tab) <- c( clab, "P0" )
if( verbose >= 3 ) {
print("initial Tableau")
print(Tab)
}
## searching for feasible solution for starting
# basis: Zero Solution ( Basic Variables = Slack Variables )
basis <- c( (nVar+1) : (nVar+nCon) )
if(min(Tab[ 1:nCon, nVar+nCon+1]) < 0 ) {
Tab2 <- Tab
Tab2 <- rbind( Tab2, rep(0, ncol(Tab2) ) )
rownames(Tab2)[nCon+2] <- "M Z-C" # additional artificial 'Z-C' row
basis2 <- basis
nArt <- 0 # number of artificial variables
for(i in 1:nCon) {
if(Tab[ i, nVar+nCon+1] < 0 ) {
Tab2[ i, ] <- -Tab2[ i, ]
Tab2 <- cbind( Tab2[ , 1:(nVar+nCon+nArt) ], rep(0,nCon+2),
Tab2[ , (nVar+nCon+nArt+1)] )
nArt <- nArt + 1
colnames(Tab2)[ nVar+nCon+nArt ] <- paste("M", rownames(Tab2)[i] )
Tab2[ i, nVar+nCon+nArt ] <- 1
Tab2[ nCon+2, nVar+nCon+nArt ] <- 1
# put artificial variables in basis
rownames(Tab2)[ i ] <- paste("M", rownames(Tab2)[i] )
basis2[i] <- nVar+nCon+nArt
}
}
for(i in 1:nCon) { # artificial objective function (Z-C)
if(Tab[ i, nVar+nCon+1] < 0 ) {
Tab2[nCon+2, 1:(nVar+nCon+nArt)] <- Tab2[nCon+2, 1:(nVar+nCon+nArt)] -
Tab2[ i , 1:(nVar+nCon+nArt)]
}
}
for(i in 1:nCon) { # value of artificial objective function
Tab2[nCon+2, nVar+nCon+nArt+1 ] <- Tab2[nCon+2, nVar+nCon+nArt+1 ] -
Tab2[i, nVar+nCon+nArt+1] * Tab2[nCon+2, basis[i] ]
}
colnames(Tab2)[ nVar+nCon+nArt+1 ] <- "P0"
if( verbose >= 3 ) {
print("initial Tableau for Phase 1")
print(Tab2)
}
## Simplex algorithm (Phase 1)
while( min( Tab2[ nCon+2, 1:(nVar+nCon+nArt) ] ) < -zero & iter1 < maxiter) {
iter1 <- iter1 + 1
## Pivot
Tab[ abs(Tab) < zero ] <- 0
# pcolumn <- which.min( Tab2[ nCon+2, 1:(nVar+nCon+nArt) ]) # Pivot column
decval <- array( NA, nVar+nCon )
for( pcolumnt in 1:(nVar+nCon+nArt) ) {
if( Tab2[ nCon+2, pcolumnt ] < 0 ) {
rwerte <- Tab2[ 1:nCon, nVar+nCon+nArt+1 ] / Tab2[ 1:nCon , pcolumnt ]
# R-values
rwerte[ Tab2[1:nCon, pcolumnt ] <= 0 ] <- max(rwerte,na.rm=TRUE)+1
prow <- which.min( rwerte ) # Pivot row
if( length( rwerte[ !is.na(rwerte) & is.finite(rwerte) ] ) >= 1 ) {
decval[ pcolumnt ] <- Tab2[ nCon+2, pcolumnt ] *
min( rwerte[ !is.na(rwerte) & is.finite(rwerte) ] )
}
}
}
if( min( decval, na.rm=TRUE ) < -zero ) {
pcolumn <- which.min( decval ) # Pivot column
} else {
pcolumn <- which.min( Tab2[ nCon+2, 1:(nVar+nCon+nArt) ]) # Pivot column
}
rwerte <- Tab2[ 1:nCon , nVar+nCon+nArt+1 ] / Tab2[ 1:nCon , pcolumn ] # R-values
rwerte[ Tab2[1:nCon, pcolumn ] <= 0 ] <- max(rwerte, na.rm=TRUE)+1
prow <- which.min( rwerte ) # Pivot row
if( verbose >=2 ) {
cat( paste( "\nPivot Column:", as.character(pcolumn),
"(",colnames(Tab2)[pcolumn],")\n" ) )
cat( paste( "Pivot Row:", as.character( prow ),
"(", rownames(Tab2)[prow], ")\n\n" ) )
}
## New Basis
basis[prow] <- pcolumn
rownames(Tab2)[prow] <- colnames(Tab2)[pcolumn]
## New Tableau
Tab2[ prow, ] <- Tab2[ prow, ] / Tab2[ prow, pcolumn ]
for( i in 1:(nCon+2) ) {
if( i != prow ) {
Tab2[ i, ] <- Tab2[ i, ] - Tab2[ prow, ] * Tab2[ i, pcolumn ]
}
}
if( verbose >= 4 ) print(Tab2)
}
if(iter1 >= maxiter ) warning("Simplex algorithm (phase 1) did not reach optimum.")
Tab <- cbind( Tab2[ 1:(nCon+1), 1:(nCon+nVar) ],
Tab2[ 1:(nCon+1), nVar+nCon+nArt+1 ] )
if( verbose >= 3 ) {
print("New starting Tableau for Phase II")
print(Tab)
}
}
## Simplex algorithm (Phase 2)
while( min( Tab[ nCon+1, 1:(nVar+nCon) ] ) < -zero & iter2 < maxiter ) {
iter2 <- iter2 + 1
## Pivot
Tab[ abs(Tab) < zero ] <- 0
# pcolumn <- which.min( Tab[ nCon+1, 1:(nVar+nCon) ]) # Pivot column
decval <- array( NA, nVar+nCon )
for( pcolumnt in 1:(nVar+nCon) ) {
if( Tab[ nCon+1, pcolumnt ] < 0 ) {
rwerte <- Tab[ 1:nCon , nVar+nCon+1 ] / Tab[ 1:nCon , pcolumnt ]
# R-values
rwerte[ Tab[1:nCon, pcolumnt ] <= 0 ] <- max(rwerte,na.rm=TRUE)+1
prow <- which.min( rwerte ) # Pivot row
if( length( rwerte[ !is.na(rwerte) & is.finite(rwerte) ] ) >= 1 ) {
decval[ pcolumnt ] <- Tab[ nCon+1, pcolumnt ] *
min( rwerte[ !is.na(rwerte) & is.finite(rwerte) ] )
}
}
}
if( min( decval, na.rm=TRUE ) < -zero ) {
pcolumn <- which.min( decval ) # Pivot column
} else {
pcolumn <- which.min( Tab[ nCon+1, 1:(nVar+nCon) ]) # Pivot column
}
rwerte <- Tab[ 1:nCon , nVar+nCon+1 ] / Tab[ 1:nCon , pcolumn ] # R-values
rwerte[ Tab[1:nCon, pcolumn ] <= 0 ] <- max(rwerte,na.rm=TRUE)+1
prow <- which.min( rwerte ) # Pivot row
if( verbose >= 2 ) {
cat( paste( "\nPivot Column:", as.character(pcolumn),
"(",colnames(Tab)[pcolumn],")\n" ) )
cat( paste( "Pivot Row:", as.character( prow ) ,
"(",rownames(Tab)[prow],")\n\n") )
}
## New Basis
basis[prow] <- pcolumn
rownames(Tab)[prow] <- colnames(Tab)[pcolumn]
## New Tableau
Tab[ prow, ] <- Tab[ prow, ] / Tab[ prow, pcolumn ]
for( i in 1:(nCon+1) ) {
if( i != prow ) {
Tab[ i, ] <- Tab[ i, ] - Tab[ prow, ] * Tab[ i, pcolumn ]
}
}
if( verbose >= 4 ) print(Tab)
}
if(iter2 >= maxiter ) warning("Simplex algorithm (phase 2) did not reach optimum.")
## Results: Basic Variables
basvar <- matrix( NA, nCon, 1 )
colnames(basvar) <- c("opt")
rownames(basvar) <- rep("a",nCon)
for( i in 1:nCon ) {
rownames(basvar)[i] <- clab[sort(basis)[i]]
basvar[i,1] <- Tab[ which(basis==sort(basis)[i]), nVar+nCon+1 ]
}
## Results: All Variables (Including Slack Variables)
allvar <- data.frame( opt=rep( NA, nVar+nCon ), cvec=cvec2, min.c=NA,
max.c=NA, marg=NA, marg.reg=NA )
rownames(allvar) <- clab
for( i in 1:(nVar+nCon) ) {
if(i %in% basis ) {
allvar$opt[ i ] <- Tab[ which(basis==i), nVar+nCon+1 ]
## Stability of Basic Variables
quot <- Tab[ nCon+1, 1:(nVar+nCon) ] / Tab[ which(basis==i), 1:(nVar+nCon) ]
if( maximum ) {
if(max(quot[!is.na(quot)]) > 0 ) {
suppressWarnings(
allvar$min.c[ i ] <- cvec2[ i ] - min(quot[quot>0 & !is.na(quot)])
)
}
if(min(quot[!is.na(quot) & is.finite(quot)]) < 0 ) {
if(max(quot[quot<0 & !is.na(quot)]) > -1e14 ) {
allvar$max.c[ i ] <- cvec2[ i ] - max(quot[quot<0 & !is.na(quot)])
} else {
allvar$max.c[ i ] <- Inf
}
} else {
allvar$max.c[ i ] <- Inf
}
} else {
if(max(quot[!is.na(quot)]) > 0 ) {
suppressWarnings(
allvar$max.c[ i ] <- cvec2[ i ] + min(quot[quot>0 & !is.na(quot)])
)
}
if(min(quot[!is.na(quot)]) < 0 ) {
if(max(quot[quot<0 & !is.na(quot)]) > -1e14 ){
allvar$min.c[ i ] <- -cvec2[ i ] + max(quot[quot<0 & !is.na(quot)])
} else {
allvar$min.c[ i ] <- NA
}
} else {
allvar$min.c[ i ] <- NA
}
}
} else {
allvar$opt[ i ] <- 0
if( i <= nVar ) {
if( maximum ) {
allvar$min.c[ i ] <- -Inf
allvar$max.c[ i ] <- Tab[ nCon+1, i ] + cvec2[i]
} else {
allvar$min.c[ i ] <- 99#-Tab[ nCon+1, i ] - cvec2[i]
allvar$max.c[ i ] <- 77#Inf
}
}
}
allvar$cvec[ i ] <- cvec2[ i ]
# marginal contribution to objective function (Shadow prices)
if( !( ( i %in% basis ) & ( i <= nVar ) ) ) {
allvar$marg[ i ] <- Tab[ nCon+1, i ] * (-1)^maximum
if( !( i %in% basis ) & ( i > nVar ) ) {
if( maximum ) {
allvar$max.c[ i ] <- Tab[ nCon+1, i ] #* (-1)^maximum
allvar$min.c[ i ] <- -Inf
} else {
allvar$min.c[ i ] <- -Tab[ nCon+1, i ]
allvar$max.c[ i ] <- Inf
}
}
quot <- Tab[ 1:nCon , nVar+nCon+1 ] / Tab[ 1:nCon, i ]
suppressWarnings(
if( !( i %in% basis) ) {
allvar$marg.reg[ i ] <- min(quot[quot>0 & !is.na(quot)])
} else {
allvar$marg.reg[ i ] <- NA
}
)
}
}
allvar$min.c[ allvar$min.c > 1e16 ] <- Inf
allvar$min.c[ allvar$min.c < -1e16 ] <- -Inf
## Results: Constraints
con <- data.frame( actual=NA, dir=const.dir, bvec=bvec, free=NA, dual=NA, dual.reg=NA )
names( con$actual ) <- blab
for(i in 1: nCon) {
if( (i+nVar) %in% basis ) {
con$actual[ i ] <- round( bvec[i] + Tab[ which((i+nVar)==basis),
nVar+nCon+1 ] * const.dir2[ i ], digits=rdigits )
} else {
con$actual[ i ] <- round( bvec[i], digits=rdigits )
}
if( -allvar$opt[ i+nVar ] == 0 ) {
con$dual[ i ] <- allvar$marg[ i+nVar ] * (-1)^maximum
con$dual.reg[ i ] <- allvar$marg.reg[ i+nVar ]
} else {
con$dual[ i ] <- 0
con$dual.reg[ i ] <- allvar$opt[ i+nVar ]
}
}
con$free <- round( con$bvec - con$actual, digits=rdigits )
con$free[ const.dir2 == 1 ] <- -con$free[ const.dir2 == 1 ]
con$free[ const.dir2 == 0 ] <- -abs( con$free[ const.dir2 == 0 ] )
result$opt <- round( -Tab[ nCon+1, nCon+nVar+1 ], digits=rdigits ) * (-1)^maximum
result$iter1 <- iter1
result$iter2 <- iter2
result$allvar <- round( allvar, digits=rdigits )
result$basvar <- round( basvar, digits=rdigits )
result$solution <- result$allvar$opt[ 1 : nVar ]
names( result$solution ) <- clab[ 1: nVar ]
result$con <- con
if( verbose >= 1 ) result$Tab <- Tab
if( iter1 >= maxiter ) result$status <- 4
if( iter2 >= maxiter ) result$status <- 5
}
if( result$status == 0 ) {
if( min ( result$con$free ) < - tol ) {
result$status <- 3
}
}
## solving the dual problem
if( solve.dual && result$status == 0 ) {
if( any( const.dir2 == 0 ) ) {
stop( paste( "At the moment the dual problem can not be solved",
"with equality constraints" ) )
}
if( maximum ) {
const.dir.dual <- rep(">=",nVar)
} else {
const.dir.dual <- rep("<=",nVar)
}
result$con$dual.p <- result$con$dual
dualres <- solveLP( cvec = bvec * const.dir2 * (-1)^maximum, bvec = cvec,
Amat = t( Amat * const.dir2 ) * (-1)^maximum, maximum = !maximum,
const.dir = const.dir.dual, maxiter = maxiter, zero = zero,
tol = dualtol, lpSolve = lpSolve, verbose = verbose )
result$dualStatus <- dualres$status
if( result$dualStatus == 0 ) {
result$con$dual <- dualres$solution
} else {
result$status <- 2
}
}
## List of Results
result$maximum <- maximum
result$lpSolve <- lpSolve
result$solve.dual <- solve.dual
result$maxiter <- maxiter
class(result) <- "solveLP"
result
}
|