1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
R version 2.15.1 (2012-06-22) -- "Roasted Marshmallows"
Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library( "linprog" )
Loading required package: lpSolve
>
> # min x1 + x2, s.t. x1 + 0.5 * x2 = 2
> cvec <- c( 1, 1 )
> Amat <- matrix( c( 1, 0.5 ), nrow = 1 )
> bvec <- 2
> a1 <- solveLP( cvec, bvec, Amat, const.dir = "=" )
Warning message:
In solveLP(cvec, bvec, Amat, const.dir = "=") :
solveLP() might return incorrect results if the model includes equality constraints and argument 'lpSolve' is 'FALSE'; please check if solveLP() returns the same results with argument 'lpSolve' equal to 'TRUE'; more information on this bug available at linprog's R-Forge site
> print( a1 )
Results of Linear Programming / Linear Optimization
Objective function (Minimum): 0
Iterations in phase 1: 0
Iterations in phase 2: 0
Solution
opt
1 0
2 0
Basic Variables
opt
S 1 0
Constraints
actual dir bvec free dual dual.reg
1 2 = 2 0 0 NA
All Variables (including slack variables)
opt cvec min.c max.c marg marg.reg
1 0 1 99 77 1 Inf
2 0 1 99 77 1 Inf
S 1 0 0 NA NA 0 NA
>
> a2 <- solveLP( cvec, bvec, Amat, const.dir = "=", lpSolve = TRUE )
> print( a2 )
Results of Linear Programming / Linear Optimization
(using lpSolve)
Objective function (Minimum): 2
Solution
opt
1 2
2 0
Constraints
actual dir bvec free
1 2 = 2 0
>
> # max 27 * x1 + 9 * x2
> # s.t. x1 - x2 = 8 & x1 + x2 <= 74
> cvec <- c( 27, 9 )
> bvec <- c( 8, 74 )
> Amat <- matrix( c( 1, 1, -1, 1 ), nrow = 2 )
> b1 <- solveLP( cvec, bvec, Amat, maximum = TRUE, const.dir = c( "==", "<=" ) )
Warning message:
In solveLP(cvec, bvec, Amat, maximum = TRUE, const.dir = c("==", :
solveLP() might return incorrect results if the model includes equality constraints and argument 'lpSolve' is 'FALSE'; please check if solveLP() returns the same results with argument 'lpSolve' equal to 'TRUE'; more information on this bug available at linprog's R-Forge site
> print( b1 )
Results of Linear Programming / Linear Optimization
Objective function (Maximum): 1998
Iterations in phase 1: 0
Iterations in phase 2: 1
Solution
opt
1 74
2 0
Basic Variables
opt
1 74
S 1 0
Constraints
actual dir bvec free dual dual.reg
1 8 == 8 0 0 NA
2 74 <= 74 0 27 74
All Variables (including slack variables)
opt cvec min.c max.c marg marg.reg
1 74 27 9 Inf NA NA
2 0 9 -Inf 27 -18 74
S 1 0 0 -Inf Inf 0 NA
S 2 0 0 -Inf 27 -27 74
>
> b2 <- solveLP( cvec, bvec, Amat, maximum = TRUE, const.dir = c( "==", "<=" ),
+ lpSolve = TRUE )
> print( b2 )
Results of Linear Programming / Linear Optimization
(using lpSolve)
Objective function (Maximum): 1404
Solution
opt
1 41
2 33
Constraints
actual dir bvec free
1 8 == 8 0
2 74 <= 74 0
>
> proc.time()
user system elapsed
0.152 0.032 0.170
|