File: linprog_tests.Rout.save

package info (click to toggle)
r-cran-linprog 0.9-4-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, trixie
  • size: 204 kB
  • sloc: sh: 13; makefile: 2
file content (880 lines) | stat: -rw-r--r-- 26,629 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

R version 4.1.2 (2021-11-01) -- "Bird Hippie"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library( linprog )
Loading required package: lpSolve
> 
> ## Example 1
> ## Steinhauser, Langbehn and Peters (1992)
> cvec <- c(1800, 600, 600)  # gross margins
> names(cvec) <- c("Cows","Bulls","Pigs")
> bvec <- c(40, 90, 2500)  # endowment
> names(bvec) <- c("Land","Stable","Labor")
> Amat <- rbind( c(  0.7,   0.35,   0 ),
+                c(  1.5,   1,      3 ),
+                c( 50,    12.5,   20 ) )
> result1a <- solveLP( cvec, bvec, Amat, TRUE, verbose = 1 )
> print( result1a )


Results of Linear Programming / Linear Optimization

Objective function (Maximum): 93600 

Iterations in phase 1: 0
Iterations in phase 2: 2
Solution
      opt
Cows   44
Bulls  24
Pigs    0

Basic Variables
        opt
Cows   44.0
Bulls  24.0
S Land  0.8

Constraints
       actual dir bvec free  dual dual.reg
Land     39.2  <=   40  0.8   0.0      0.8
Stable   90.0  <=   90  0.0 240.0     15.0
Labor  2500.0  <= 2500  0.0  28.8   1375.0

All Variables (including slack variables)
          opt cvec min.c    max.c   marg marg.reg
Cows     44.0 1800   900 2400.000     NA       NA
Bulls    24.0  600   450 1200.000     NA       NA
Pigs      0.0  600  -Inf 1296.000 -696.0     6.25
S Land    0.8    0    NA  731.092    0.0       NA
S Stable  0.0    0  -Inf  240.000 -240.0    15.00
S Labor   0.0    0  -Inf   28.800  -28.8  1375.00

> # print summary results
> summary( result1a )


Results of Linear Programming / Linear Optimization

Objective function (Maximum): 93600 

Solution
      opt
Cows   44
Bulls  24
Pigs    0

> # print all elements of the returned object
> print.default( result1a )
$status
[1] 0

$opt
[1] 93600

$iter1
[1] 0

$iter2
[1] 2

$allvar
          opt cvec min.c     max.c   marg marg.reg
Cows     44.0 1800   900 2400.0000     NA       NA
Bulls    24.0  600   450 1200.0000     NA       NA
Pigs      0.0  600  -Inf 1296.0000 -696.0     6.25
S Land    0.8    0    NA  731.0924    0.0       NA
S Stable  0.0    0  -Inf  240.0000 -240.0    15.00
S Labor   0.0    0  -Inf   28.8000  -28.8  1375.00

$basvar
        opt
Cows   44.0
Bulls  24.0
S Land  0.8

$solution
 Cows Bulls  Pigs 
   44    24     0 

$con
       actual dir bvec free  dual dual.reg
Land     39.2  <=   40  0.8   0.0      0.8
Stable   90.0  <=   90  0.0 240.0     15.0
Labor  2500.0  <= 2500  0.0  28.8   1375.0

$Tab
      Cows Bulls    Pigs S Land S Stable S Labor      P0
Land     0     0  -0.952      1    -0.28 -0.0056     0.8
Bulls    0     1   3.840      0     1.60 -0.0480    24.0
Cows     1     0  -0.560      0    -0.40  0.0320    44.0
Z-C      0     0 696.000      0   240.00 28.8000 93600.0

$maximum
[1] TRUE

$lpSolve
[1] FALSE

$solve.dual
[1] FALSE

$maxiter
[1] 1000

attr(,"class")
[1] "solveLP"
> # also estimate the dual problem
> result1aD <- solveLP( cvec, bvec, Amat, TRUE, verbose = 1, solve.dual = TRUE )
> result1aD$con
       actual dir bvec free  dual dual.reg dual.p
Land     39.2  <=   40  0.8   0.0      0.8    0.0
Stable   90.0  <=   90  0.0 240.0     15.0  240.0
Labor  2500.0  <= 2500  0.0  28.8   1375.0   28.8
> all.equal( result1a[-c(8,12)], result1aD[-c(8,10,13)] )
[1] TRUE
> 
> # estimation with verbose = TRUE
> result1b <- solveLP( cvec, bvec, Amat, TRUE, verbose = 4 )
[1] "initial Tableau"
          Cows   Bulls Pigs S Land S Stable S Labor   P0
Land       0.7    0.35    0      1        0       0   40
Stable     1.5    1.00    3      0        1       0   90
Labor     50.0   12.50   20      0        0       1 2500
Z-C    -1800.0 -600.00 -600      0        0       0    0

Pivot Column: 1 ( Cows )
Pivot Row: 3 ( Labor )

       Cows    Bulls   Pigs S Land S Stable S Labor    P0
Land      0    0.175  -0.28      1        0  -0.014     5
Stable    0    0.625   2.40      0        1  -0.030    15
Cows      1    0.250   0.40      0        0   0.020    50
Z-C       0 -150.000 120.00      0        0  36.000 90000

Pivot Column: 2 ( Bulls )
Pivot Row: 2 ( Stable )

      Cows Bulls    Pigs S Land S Stable S Labor      P0
Land     0     0  -0.952      1    -0.28 -0.0056     0.8
Bulls    0     1   3.840      0     1.60 -0.0480    24.0
Cows     1     0  -0.560      0    -0.40  0.0320    44.0
Z-C      0     0 696.000      0   240.00 28.8000 93600.0
> all.equal( result1a, result1b )
[1] TRUE
> # also estimate the dual problem
> result1bD <- solveLP( cvec, bvec, Amat, TRUE, verbose = 4, solve.dual = TRUE )
[1] "initial Tableau"
          Cows   Bulls Pigs S Land S Stable S Labor   P0
Land       0.7    0.35    0      1        0       0   40
Stable     1.5    1.00    3      0        1       0   90
Labor     50.0   12.50   20      0        0       1 2500
Z-C    -1800.0 -600.00 -600      0        0       0    0

Pivot Column: 1 ( Cows )
Pivot Row: 3 ( Labor )

       Cows    Bulls   Pigs S Land S Stable S Labor    P0
Land      0    0.175  -0.28      1        0  -0.014     5
Stable    0    0.625   2.40      0        1  -0.030    15
Cows      1    0.250   0.40      0        0   0.020    50
Z-C       0 -150.000 120.00      0        0  36.000 90000

Pivot Column: 2 ( Bulls )
Pivot Row: 2 ( Stable )

      Cows Bulls    Pigs S Land S Stable S Labor      P0
Land     0     0  -0.952      1    -0.28 -0.0056     0.8
Bulls    0     1   3.840      0     1.60 -0.0480    24.0
Cows     1     0  -0.560      0    -0.40  0.0320    44.0
Z-C      0     0 696.000      0   240.00 28.8000 93600.0
[1] "initial Tableau"
       Land Stable  Labor S Cows S Bulls S Pigs    P0
Cows  -0.70   -1.5  -50.0      1       0      0 -1800
Bulls -0.35   -1.0  -12.5      0       1      0  -600
Pigs   0.00   -3.0  -20.0      0       0      1  -600
Z-C   40.00   90.0 2500.0      0       0      0     0
[1] "initial Tableau for Phase 1"
         Land Stable  Labor S Cows S Bulls S Pigs M Cows M Bulls M Pigs    P0
M Cows   0.70    1.5   50.0     -1       0      0      1       0      0  1800
M Bulls  0.35    1.0   12.5      0      -1      0      0       1      0   600
M Pigs   0.00    3.0   20.0      0       0     -1      0       0      1   600
Z-C     40.00   90.0 2500.0      0       0      0      0       0      0     0
M Z-C   -1.05   -5.5  -82.5      1       1      1      0       0      0 -3000

Pivot Column: 3 ( Labor )
Pivot Row: 3 ( M Pigs )

         Land   Stable Labor S Cows S Bulls  S Pigs M Cows M Bulls   M Pigs
M Cows   0.70   -6.000     0     -1       0   2.500      1       0   -2.500
M Bulls  0.35   -0.875     0      0      -1   0.625      0       1   -0.625
Labor    0.00    0.150     1      0       0  -0.050      0       0    0.050
Z-C     40.00 -285.000     0      0       0 125.000      0       0 -125.000
M Z-C   -1.05    6.875     0      1       1  -3.125      0       0    4.125
            P0
M Cows     300
M Bulls    225
Labor       30
Z-C     -75000
M Z-C     -525

Pivot Column: 1 ( Land )
Pivot Row: 1 ( M Cows )

        Land    Stable Labor    S Cows S Bulls     S Pigs     M Cows M Bulls
Land       1 -8.571429     0 -1.428571       0   3.571429   1.428571       0
M Bulls    0  2.125000     0  0.500000      -1  -0.625000  -0.500000       1
Labor      0  0.150000     1  0.000000       0  -0.050000   0.000000       0
Z-C        0 57.857143     0 57.142857       0 -17.857143 -57.142857       0
M Z-C      0 -2.125000     0 -0.500000       1   0.625000   1.500000       0
           M Pigs          P0
Land    -3.571429    428.5714
M Bulls  0.625000     75.0000
Labor    0.050000     30.0000
Z-C     17.857143 -92142.8571
M Z-C    0.375000    -75.0000

Pivot Column: 4 ( S Cows )
Pivot Row: 2 ( M Bulls )

       Land        Stable Labor S Cows       S Bulls        S Pigs M Cows
Land      1 -2.500000e+00     0      0 -2.857143e+00  1.785714e+00      0
S Cows    0  4.250000e+00     0      1 -2.000000e+00 -1.250000e+00     -1
Labor     0  1.500000e-01     1      0  0.000000e+00 -5.000000e-02      0
Z-C       0 -1.850000e+02     0      0  1.142857e+02  5.357143e+01      0
M Z-C     0  4.440892e-16     0      0  4.440892e-16 -2.220446e-16      1
           M Bulls     M Pigs            P0
Land      2.857143  -1.785714  6.428571e+02
S Cows    2.000000   1.250000  1.500000e+02
Labor     0.000000   0.050000  3.000000e+01
Z-C    -114.285714 -53.571429 -1.007143e+05
M Z-C     1.000000   1.000000 -8.526513e-14
[1] "New starting Tableau for Phase II"
       Land  Stable Labor S Cows    S Bulls    S Pigs             
Land      1   -2.50     0      0  -2.857143  1.785714     642.8571
S Cows    0    4.25     0      1  -2.000000 -1.250000     150.0000
Labor     0    0.15     1      0   0.000000 -0.050000      30.0000
Z-C       0 -185.00     0      0 114.285714 53.571429 -100714.2857

Pivot Column: 2 ( Stable )
Pivot Row: 2 ( S Cows )

       Land Stable Labor      S Cows     S Bulls       S Pigs             
Land      1      0     0  0.58823529 -4.03361345  1.050420168    731.09244
Stable    0      1     0  0.23529412 -0.47058824 -0.294117647     35.29412
Labor     0      0     1 -0.03529412  0.07058824 -0.005882353     24.70588
Z-C       0      0     0 43.52941176 27.22689076 -0.840336134 -94184.87395

Pivot Column: 6 ( S Pigs )
Pivot Row: 1 ( Land )

         Land Stable Labor S Cows S Bulls S Pigs         
S Pigs 0.9520      0     0  0.560  -3.840      1    696.0
Stable 0.2800      1     0  0.400  -1.600      0    240.0
Labor  0.0056      0     1 -0.032   0.048      0     28.8
Z-C    0.8000      0     0 44.000  24.000      0 -93600.0
> all.equal( result1aD, result1bD )
[1] TRUE
> 
> # estimation with lpSolve
> result1c <- solveLP( cvec, bvec, Amat, TRUE, lpSolve = TRUE, verbose = 4 )
> print( result1c )


Results of Linear Programming / Linear Optimization
(using lpSolve)

Objective function (Maximum): 93600 

Solution
      opt
Cows   44
Bulls  24
Pigs    0

Constraints
       actual dir bvec free
Land     39.2  <=   40  0.8
Stable   90.0  <=   90  0.0
Labor  2500.0  <= 2500  0.0

> # print summary results
> summary( result1c )


Results of Linear Programming / Linear Optimization

Objective function (Maximum): 93600 

Solution
      opt
Cows   44
Bulls  24
Pigs    0

> # print all elements of the returned object
> print.default( result1c )
$status
[1] 0

$lpStatus
[1] 0

$solution
 Cows Bulls  Pigs 
   44    24     0 

$opt
[1] 93600

$con
       actual dir bvec free
Land     39.2  <=   40  0.8
Stable   90.0  <=   90  0.0
Labor  2500.0  <= 2500  0.0

$maximum
[1] TRUE

$lpSolve
[1] TRUE

$solve.dual
[1] FALSE

$maxiter
[1] 1000

attr(,"class")
[1] "solveLP"
> # also estimate the dual problem
> result1cD <- solveLP( cvec, bvec, Amat, TRUE, lpSolve = TRUE, solve.dual = TRUE )
> result1cD$con
       actual dir bvec free  dual
Land     39.2  <=   40  0.8   0.0
Stable   90.0  <=   90  0.0 240.0
Labor  2500.0  <= 2500  0.0  28.8
> all.equal( result1c[-c(5,8)], result1cD[-c(5,6,9)] )
[1] TRUE
> 
> # using argument const.dir
> const.dir <- c( ">=", ">=", ">=" )
> result1d <- solveLP( cvec, -bvec, -Amat, maximum = TRUE, verbose = 1,
+    const.dir = const.dir )
> print( result1d )


Results of Linear Programming / Linear Optimization

Objective function (Maximum): 93600 

Iterations in phase 1: 0
Iterations in phase 2: 2
Solution
      opt
Cows   44
Bulls  24
Pigs    0

Basic Variables
        opt
Cows   44.0
Bulls  24.0
S Land  0.8

Constraints
        actual dir  bvec free  dual dual.reg
Land     -39.2  >=   -40  0.8   0.0      0.8
Stable   -90.0  >=   -90  0.0 240.0     15.0
Labor  -2500.0  >= -2500  0.0  28.8   1375.0

All Variables (including slack variables)
          opt cvec min.c    max.c   marg marg.reg
Cows     44.0 1800   900 2400.000     NA       NA
Bulls    24.0  600   450 1200.000     NA       NA
Pigs      0.0  600  -Inf 1296.000 -696.0     6.25
S Land    0.8    0    NA  731.092    0.0       NA
S Stable  0.0    0  -Inf  240.000 -240.0    15.00
S Labor   0.0    0  -Inf   28.800  -28.8  1375.00

> all.equal( result1a[-8], result1d[-8] )
[1] TRUE
> # also estimate the dual problem
> result1dD <- solveLP( cvec, -bvec, -Amat, TRUE, verbose = 1,
+    const.dir = const.dir, solve.dual = TRUE )
> result1dD$con
        actual dir  bvec free  dual dual.reg dual.p
Land     -39.2  >=   -40  0.8   0.0      0.8    0.0
Stable   -90.0  >=   -90  0.0 240.0     15.0  240.0
Labor  -2500.0  >= -2500  0.0  28.8   1375.0   28.8
> all.equal( result1aD[-8], result1dD[-8] )
[1] TRUE
> 
> # using argument const.dir and lpSolve
> result1e <-solveLP( cvec, -bvec, -Amat, maximum = TRUE, verbose = 1,
+    const.dir = const.dir, lpSolve = TRUE )
> print( result1e )


Results of Linear Programming / Linear Optimization
(using lpSolve)

Objective function (Maximum): 93600 

Solution
      opt
Cows   44
Bulls  24
Pigs    0

Constraints
        actual dir  bvec free
Land     -39.2  >=   -40  0.8
Stable   -90.0  >=   -90  0.0
Labor  -2500.0  >= -2500  0.0

> all.equal( result1c[-5], result1e[-5] )
[1] TRUE
> # also estimate the dual problem
> result1eD <- solveLP( cvec, -bvec, -Amat, TRUE, verbose = 1,
+    const.dir = const.dir, lpSolve = TRUE, solve.dual = TRUE )
> result1eD$con
        actual dir  bvec free  dual
Land     -39.2  >=   -40  0.8   0.0
Stable   -90.0  >=   -90  0.0 240.0
Labor  -2500.0  >= -2500  0.0  28.8
> all.equal( result1cD[-5], result1eD[-5] )
[1] TRUE
> 
> 
> ## Example 2
> ## example 1.1.3 of Witte, Deppe and Born (1975)
> cvec <- c(2.5, 2 )  # prices of feed
> names(cvec) <- c("Feed1","Feed2")
> bvec <- c( -10, -1.5, 12)
> names(bvec) <- c("Protein","Fat","Fibre")
> Amat <- rbind( c(-1.6,-2.4 ),
+                c(-0.5,-0.2 ),
+                c( 2.0, 2.0 ) )
> result2a <- solveLP( cvec, bvec, Amat, verbose = 1 )
> print( result2a )


Results of Linear Programming / Linear Optimization

Objective function (Minimum): 10.4545 

Iterations in phase 1: 2
Iterations in phase 2: 0
Solution
          opt
Feed1 1.81818
Feed2 2.95455

Basic Variables
            opt
Feed1   1.81818
Feed2   2.95455
S Fibre 2.45455

Constraints
           actual dir  bvec    free     dual dual.reg
Protein -10.00000  <= -10.0 0.00000 0.568182  3.60000
Fat      -1.50000  <=  -1.5 0.00000 3.181818  1.35000
Fibre     9.54545  <=  12.0 2.45455 0.000000  2.45455

All Variables (including slack variables)
              opt cvec     min.c    max.c     marg marg.reg
Feed1     1.81818  2.5 -3.666667 5.000000       NA       NA
Feed2     2.95455  2.0 -3.000000 3.750000       NA       NA
S Protein 0.00000  0.0 -0.568182      Inf 0.568182     3.60
S Fat     0.00000  0.0 -3.181818      Inf 3.181818     1.35
S Fibre   2.45455  0.0        NA 0.833333 0.000000       NA

> # print summary results
> summary( result2a )


Results of Linear Programming / Linear Optimization

Objective function (Minimum): 10.45455 

Solution
           opt
Feed1 1.818182
Feed2 2.954545

> # print all elements of the returned object
> print.default( result2a )
$status
[1] 0

$opt
[1] 10.45455

$iter1
[1] 2

$iter2
[1] 0

$allvar
               opt cvec      min.c     max.c      marg marg.reg
Feed1     1.818182  2.5 -3.6666667 5.0000000        NA       NA
Feed2     2.954545  2.0 -3.0000000 3.7500000        NA       NA
S Protein 0.000000  0.0 -0.5681818       Inf 0.5681818     3.60
S Fat     0.000000  0.0 -3.1818182       Inf 3.1818182     1.35
S Fibre   2.454545  0.0         NA 0.8333333 0.0000000       NA

$basvar
             opt
Feed1   1.818182
Feed2   2.954545
S Fibre 2.454545

$solution
   Feed1    Feed2 
1.818182 2.954545 

$con
            actual dir  bvec     free      dual dual.reg
Protein -10.000000  <= -10.0 0.000000 0.5681818 3.600000
Fat      -1.500000  <=  -1.5 0.000000 3.1818182 1.350000
Fibre     9.545455  <=  12.0 2.454545 0.0000000 2.454545

$Tab
      Feed1 Feed2  S Protein     S Fat S Fibre           
Feed2     0     1 -0.5681818  1.818182       0   2.954545
Feed1     1     0  0.2272727 -2.727273       0   1.818182
Fibre     0     0  0.6818182  1.818182       1   2.454545
Z-C       0     0  0.5681818  3.181818       0 -10.454545

$maximum
[1] FALSE

$lpSolve
[1] FALSE

$solve.dual
[1] FALSE

$maxiter
[1] 1000

attr(,"class")
[1] "solveLP"
> # also estimate the dual problem
> result2aD <- solveLP( cvec, bvec, Amat, verbose = 1, solve.dual = TRUE )
> result2aD$con
            actual dir  bvec     free      dual dual.reg    dual.p
Protein -10.000000  <= -10.0 0.000000 0.5681818 3.600000 0.5681818
Fat      -1.500000  <=  -1.5 0.000000 3.1818182 1.350000 3.1818182
Fibre     9.545455  <=  12.0 2.454545 0.0000000 2.454545 0.0000000
> all.equal( result2a[-c(8,12)], result2aD[-c(8,10,13)] )
[1] TRUE
> 
> # estimation with verbose = TRUE
> result2b <- solveLP( cvec, bvec, Amat, verbose = 4 )
[1] "initial Tableau"
        Feed1 Feed2 S Protein S Fat S Fibre    P0
Protein  -1.6  -2.4         1     0       0 -10.0
Fat      -0.5  -0.2         0     1       0  -1.5
Fibre     2.0   2.0         0     0       1  12.0
Z-C       2.5   2.0         0     0       0   0.0
[1] "initial Tableau for Phase 1"
          Feed1 Feed2 S Protein S Fat S Fibre M Protein M Fat    P0
M Protein   1.6   2.4        -1     0       0         1     0  10.0
M Fat       0.5   0.2         0    -1       0         0     1   1.5
Fibre       2.0   2.0         0     0       1         0     0  12.0
Z-C         2.5   2.0         0     0       0         0     0   0.0
M Z-C      -2.1  -2.6         1     1       0         0     0 -11.5

Pivot Column: 2 ( Feed2 )
Pivot Row: 1 ( M Protein )

           Feed1 Feed2   S Protein S Fat S Fibre   M Protein M Fat         P0
Feed2  0.6666667     1 -0.41666667     0       0  0.41666667     0  4.1666667
M Fat  0.3666667     0  0.08333333    -1       0 -0.08333333     1  0.6666667
Fibre  0.6666667     0  0.83333333     0       1 -0.83333333     0  3.6666667
Z-C    1.1666667     0  0.83333333     0       0 -0.83333333     0 -8.3333333
M Z-C -0.3666667     0 -0.08333333     1       0  1.08333333     0 -0.6666667

Pivot Column: 1 ( Feed1 )
Pivot Row: 2 ( M Fat )

      Feed1 Feed2     S Protein         S Fat S Fibre  M Protein     M Fat
Feed2     0     1 -5.681818e-01  1.818182e+00       0  0.5681818 -1.818182
Feed1     1     0  2.272727e-01 -2.727273e+00       0 -0.2272727  2.727273
Fibre     0     0  6.818182e-01  1.818182e+00       1 -0.6818182 -1.818182
Z-C       0     0  5.681818e-01  3.181818e+00       0 -0.5681818 -3.181818
M Z-C     0     0 -1.804112e-16  4.440892e-16       0  1.0000000  1.000000
                 P0
Feed2  2.954545e+00
Feed1  1.818182e+00
Fibre  2.454545e+00
Z-C   -1.045455e+01
M Z-C  1.110223e-16
[1] "New starting Tableau for Phase II"
      Feed1 Feed2  S Protein     S Fat S Fibre           
Feed2     0     1 -0.5681818  1.818182       0   2.954545
Feed1     1     0  0.2272727 -2.727273       0   1.818182
Fibre     0     0  0.6818182  1.818182       1   2.454545
Z-C       0     0  0.5681818  3.181818       0 -10.454545
> all.equal( result1a, result1b )
[1] TRUE
> # also estimate the dual problem
> result2bD <- solveLP( cvec, bvec, Amat, verbose = 4, solve.dual = TRUE )
[1] "initial Tableau"
        Feed1 Feed2 S Protein S Fat S Fibre    P0
Protein  -1.6  -2.4         1     0       0 -10.0
Fat      -0.5  -0.2         0     1       0  -1.5
Fibre     2.0   2.0         0     0       1  12.0
Z-C       2.5   2.0         0     0       0   0.0
[1] "initial Tableau for Phase 1"
          Feed1 Feed2 S Protein S Fat S Fibre M Protein M Fat    P0
M Protein   1.6   2.4        -1     0       0         1     0  10.0
M Fat       0.5   0.2         0    -1       0         0     1   1.5
Fibre       2.0   2.0         0     0       1         0     0  12.0
Z-C         2.5   2.0         0     0       0         0     0   0.0
M Z-C      -2.1  -2.6         1     1       0         0     0 -11.5

Pivot Column: 2 ( Feed2 )
Pivot Row: 1 ( M Protein )

           Feed1 Feed2   S Protein S Fat S Fibre   M Protein M Fat         P0
Feed2  0.6666667     1 -0.41666667     0       0  0.41666667     0  4.1666667
M Fat  0.3666667     0  0.08333333    -1       0 -0.08333333     1  0.6666667
Fibre  0.6666667     0  0.83333333     0       1 -0.83333333     0  3.6666667
Z-C    1.1666667     0  0.83333333     0       0 -0.83333333     0 -8.3333333
M Z-C -0.3666667     0 -0.08333333     1       0  1.08333333     0 -0.6666667

Pivot Column: 1 ( Feed1 )
Pivot Row: 2 ( M Fat )

      Feed1 Feed2     S Protein         S Fat S Fibre  M Protein     M Fat
Feed2     0     1 -5.681818e-01  1.818182e+00       0  0.5681818 -1.818182
Feed1     1     0  2.272727e-01 -2.727273e+00       0 -0.2272727  2.727273
Fibre     0     0  6.818182e-01  1.818182e+00       1 -0.6818182 -1.818182
Z-C       0     0  5.681818e-01  3.181818e+00       0 -0.5681818 -3.181818
M Z-C     0     0 -1.804112e-16  4.440892e-16       0  1.0000000  1.000000
                 P0
Feed2  2.954545e+00
Feed1  1.818182e+00
Fibre  2.454545e+00
Z-C   -1.045455e+01
M Z-C  1.110223e-16
[1] "New starting Tableau for Phase II"
      Feed1 Feed2  S Protein     S Fat S Fibre           
Feed2     0     1 -0.5681818  1.818182       0   2.954545
Feed1     1     0  0.2272727 -2.727273       0   1.818182
Fibre     0     0  0.6818182  1.818182       1   2.454545
Z-C       0     0  0.5681818  3.181818       0 -10.454545
[1] "initial Tableau"
      Protein  Fat Fibre S Feed1 S Feed2  P0
Feed1     1.6  0.5    -2       1       0 2.5
Feed2     2.4  0.2    -2       0       1 2.0
Z-C     -10.0 -1.5    12       0       0 0.0

Pivot Column: 1 ( Protein )
Pivot Row: 2 ( Feed2 )

        Protein         Fat      Fibre S Feed1    S Feed2        P0
Feed1         0  0.36666667 -0.6666667       1 -0.6666667 1.1666667
Protein       1  0.08333333 -0.8333333       0  0.4166667 0.8333333
Z-C           0 -0.66666667  3.6666667       0  4.1666667 8.3333333

Pivot Column: 2 ( Fat )
Pivot Row: 1 ( Feed1 )

        Protein Fat      Fibre    S Feed1    S Feed2         P0
Fat           0   1 -1.8181818  2.7272727 -1.8181818  3.1818182
Protein       1   0 -0.6818182 -0.2272727  0.5681818  0.5681818
Z-C           0   0  2.4545455  1.8181818  2.9545455 10.4545455
> all.equal( result2aD, result2bD )
[1] TRUE
> 
> # estimation with lpSolve
> result2c <- solveLP( cvec, bvec, Amat, lpSolve = TRUE, verbose = 4 )
> print( result2c )


Results of Linear Programming / Linear Optimization
(using lpSolve)

Objective function (Minimum): 10.4545 

Solution
          opt
Feed1 1.81818
Feed2 2.95455

Constraints
           actual dir  bvec    free
Protein -10.00000  <= -10.0 0.00000
Fat      -1.50000  <=  -1.5 0.00000
Fibre     9.54545  <=  12.0 2.45455

> # print summary results
> summary( result2c )


Results of Linear Programming / Linear Optimization

Objective function (Minimum): 10.45455 

Solution
           opt
Feed1 1.818182
Feed2 2.954545

> # print all elements of the returned object
> print.default( result2c )
$status
[1] 0

$lpStatus
[1] 0

$solution
   Feed1    Feed2 
1.818182 2.954545 

$opt
[1] 10.45455

$con
            actual dir  bvec     free
Protein -10.000000  <= -10.0 0.000000
Fat      -1.500000  <=  -1.5 0.000000
Fibre     9.545455  <=  12.0 2.454545

$maximum
[1] FALSE

$lpSolve
[1] TRUE

$solve.dual
[1] FALSE

$maxiter
[1] 1000

attr(,"class")
[1] "solveLP"
> # also estimate the dual problem
> result2cD <- solveLP( cvec, bvec, Amat, lpSolve = TRUE, verbose = 4,
+    solve.dual = TRUE )
> result2cD$con
            actual dir  bvec     free      dual
Protein -10.000000  <= -10.0 0.000000 0.5681818
Fat      -1.500000  <=  -1.5 0.000000 3.1818182
Fibre     9.545455  <=  12.0 2.454545 0.0000000
> all.equal( result2c[-c(5,8)], result2cD[-c(5,6,9)] )
[1] TRUE
> 
> # using argument const.dir
> const.dir <- c( ">=", ">=", "<=" )
> result2d <- solveLP( cvec, abs( bvec ), abs( Amat ), verbose = 1,
+    const.dir = const.dir )
> print( result2d )


Results of Linear Programming / Linear Optimization

Objective function (Minimum): 10.4545 

Iterations in phase 1: 2
Iterations in phase 2: 0
Solution
          opt
Feed1 1.81818
Feed2 2.95455

Basic Variables
            opt
Feed1   1.81818
Feed2   2.95455
S Fibre 2.45455

Constraints
          actual dir bvec    free     dual dual.reg
Protein 10.00000  >= 10.0 0.00000 0.568182  3.60000
Fat      1.50000  >=  1.5 0.00000 3.181818  1.35000
Fibre    9.54545  <= 12.0 2.45455 0.000000  2.45455

All Variables (including slack variables)
              opt cvec     min.c    max.c     marg marg.reg
Feed1     1.81818  2.5 -3.666667 5.000000       NA       NA
Feed2     2.95455  2.0 -3.000000 3.750000       NA       NA
S Protein 0.00000  0.0 -0.568182      Inf 0.568182     3.60
S Fat     0.00000  0.0 -3.181818      Inf 3.181818     1.35
S Fibre   2.45455  0.0        NA 0.833333 0.000000       NA

> all.equal( result2a[-8], result2d[-8] )
[1] TRUE
> # also estimate the dual problem
> result2dD <- solveLP( cvec, abs( bvec ), abs( Amat ), verbose = 1,
+    const.dir = const.dir, solve.dual = TRUE )
> result2dD$con
           actual dir bvec     free      dual dual.reg    dual.p
Protein 10.000000  >= 10.0 0.000000 0.5681818 3.600000 0.5681818
Fat      1.500000  >=  1.5 0.000000 3.1818182 1.350000 3.1818182
Fibre    9.545455  <= 12.0 2.454545 0.0000000 2.454545 0.0000000
> all.equal( result2aD[-8], result2dD[-8] )
[1] TRUE
> 
> # using argument const.dir and lpSolve
> result2e <- solveLP( cvec, abs( bvec ), abs( Amat ), verbose = 1,
+    const.dir = const.dir, lpSolve = TRUE )
> print( result2e )


Results of Linear Programming / Linear Optimization
(using lpSolve)

Objective function (Minimum): 10.4545 

Solution
          opt
Feed1 1.81818
Feed2 2.95455

Constraints
          actual dir bvec    free
Protein 10.00000  >= 10.0 0.00000
Fat      1.50000  >=  1.5 0.00000
Fibre    9.54545  <= 12.0 2.45455

> all.equal( result2c[-5], result2e[-5] )
[1] TRUE
> # also estimate the dual problem
> result2eD <- solveLP( cvec, abs( bvec ), abs( Amat ), verbose = 1,
+    const.dir = const.dir, lpSolve = TRUE, solve.dual = TRUE )
> result2eD$con
           actual dir bvec     free      dual
Protein 10.000000  >= 10.0 0.000000 0.5681818
Fat      1.500000  >=  1.5 0.000000 3.1818182
Fibre    9.545455  <= 12.0 2.454545 0.0000000
> all.equal( result2cD[-5], result2eD[-5] )
[1] TRUE
> 
> 
> 
> proc.time()
   user  system elapsed 
  0.206   0.017   0.214