1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
|
\name{qloglin}
\alias{qloglin}
\title{Quantile Function In a Simple Log-Linear model}
\description{Suppose the random variable \eqn{X} has density function
\deqn{g_\theta(x) = \frac{\theta \exp(\theta x)}{\exp(\theta) - 1}}{g_\theta(x) = (\theta exp(\theta x))/(exp(\theta) - 1)}
for an arbitrary real number \eqn{\theta} and \eqn{x \in [0,1]}. The function \code{\link{qloglin}} is simply the
quantile function
\deqn{G^{-1}_\theta(u) = \theta^{-1} \log \Big( 1 + (e^\theta - 1)u \Big)}{G^{-1}_\theta(u) = \theta^{-1} log (1 + (e^\theta - 1)u)}
in this model, for \eqn{u \in [0,1]}. This quantile function is used for the computation of quantiles of \eqn{\widehat F_m} in \code{\link{quantilesLogConDens}}.}
\usage{qloglin(u, t)}
\arguments{
\item{u}{Vector in \eqn{[0,1]^d} where quantiles are to be computed at.}
\item{t}{Parameter \eqn{\theta}.}
}
\value{\item{z}{Vector containing the quantiles \eqn{G_n^{-1}(u_i)} for \eqn{i = 1, \ldots, d}.}}
\note{Taylor approximation is used if \eqn{\theta} is small.
This function is not intended to be called by the end user.}
\author{
Kaspar Rufibach, \email{kaspar.rufibach@gmail.com}, \cr \url{http://www.kasparrufibach.ch}
Lutz Duembgen, \email{duembgen@stat.unibe.ch}, \cr \url{https://www.imsv.unibe.ch/about_us/staff/prof_dr_duembgen_lutz/index_eng.html}}
\keyword{htest}
\keyword{nonparametric}
|